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ABSTRACT 

Pavement management systems are important tools that planning agencies depend upon for the 
effective maintenance of roadway systems.  Although uncertainty is an inherent trait of these systems, 
the current approaches generally exclude its consideration from the analysis.  Consequently, 
decision-makers disregard opportunities to embed sources of flexibility that may be advantageous to 
deploy if future conditions unfold differently from expectations.  One potential source of flexibility 
available to planners is the incorporation of a broader range of paving materials and designs as part 
of their pavement preservation strategy.  More specifically, this thesis hypothesizes that the inclusion 
of concrete-based maintenance alternatives by an agency can act as an insurance policy that protects 
planners at moments of spiraling costs for other paving commodities. 

To test the hypothesis set forth, this dissertation develops a stochastic simulation model that 
incorporates uncertainty as it relates to roadway deterioration and the future cost of maintenance 
actions.  Its greedy heuristic algorithm addresses the inability of the current methods to (a) account 
for the heterogeneous (e.g., material, design, traffic) nature of pavements (b) scale for the type of 
real-world contexts that planners intend to use pavement management systems and/or (c) allow 
decisions to be made sequentially over time.   The algorithm provides a high fidelity solution that 
generally falls within 2% of the global optimum for low-dimensional and deterministic problems.  
Subsequently, the model is applied to the Commonwealth of Virginia’s interstate system, whose 
department of transportation (VDOT) traditionally only maintains their pavements with asphalt-
based technologies, to minimize traffic-weighted roughness over a 50-year analysis period. 

A comparison of the solution for Virginia demonstrates that the DOT could achieve its desired 
performance goals, on average, at a cost reduction of 10% by incorporating multiple paving materials 
as part of their pavement management strategy.  Results from the simulations indicate that much of 
the expected benefit from the concrete-based designs stems from their ability to mitigate poor 
performance at times where asphalt prices are significantly higher than expected.  These results 
suggest that the benefit from incorporating a larger range of paving materials and designs by a 
planning agency could be much higher than agencies realize using the current deterministic 
approach for pavement management. 
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Title: Professor of Civil and Environmental Engineering 
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I. PAVEMENT MANAGEMENT OVERVIEW 

SYNTHESIS 

Part I provides a general overview of the goals and objectives of this dissertation.  Chapter 1 begins 

by presenting an abbreviated synthesis of the evolution of science and engineering over the last four 

centuries.   This chapter posits that engineering in today’s world requires sound technical design 

that must also meet ex-ante returns of relevant stakeholders. Planners and designers of complex 

engineering systems are frequently unable to fulfill the latter requirement, at least in part, because 

they design under the assumption of a known and deterministic future.  As a result, this thesis 

postulates, similar to others, that designers must leave room for the doubt in order to (a) recognize 

the risk of the status-quo and (b) appreciate the value of embedding flexibility to proactively deal 

with the unknown.     

Chapter 2 subsequently details the existing paradigms used by both practitioners and academics for 

pavement management systems, the focus of this thesis.  Such systems are another example of 

analytical tools used by planners to guide multi-billion dollar investments that overlook uncertainty 

in the decision-making process.  Consequently, this chapter hypothesizes that the exclusion of 

uncertainty causes the current methods to underestimate the value of incorporating a broader range 

of pavement materials and designs as part of a planning agency’s pavement maintenance strategy.  A 

high-level summary is presented at the end of this chapter of the modeling approach used to test the 

hypothesis of this dissertation.  
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CHAPTER 1: INTRODUCTION  

 “The scientist has a lot of experience with ignorance and doubt and uncertainty, and 
this experience is of very great importance, I think. When a scientist doesn't know 
the answer to a problem, he is ignorant. When he has a hunch as to what the result 
is, he is uncertain. And when he is pretty damn sure of what the result is going to be, 
he is still in some doubt. We have found it of paramount importance that in order 
to progress we must recognize the ignorance and leave room for doubt. Scientific 
knowledge is a body of statements of varying degrees of certainty – some most unsure, 
some nearly sure, but none absolutely certain.” 

-Richard Feynman (1918-1988) 
   

The scientific revolution, and the 400 years of discovery that followed the early findings of Galileo 

in the late 16th century, facilitated the creation of the modern society for which we know today.  Our 

avidity to explore the unknown allowed for the creation of new technologies, such as the automobile 

and computer, that have transformed our everyday lives.  Over time, however, there has been a subtle 

yet tremendous shift in how society views and values scientific discovery.  A prime example of this 

change can be found in Science: The Endless Frontier, a report authored by Vanevar Bush, director of 

the Office of Scientific Research and Development following World War II, to President Harry 

Truman.  The report, which outlined the need for strong government support of science and 

engineering research for the sake of “the war against disease, our national security, and public 

welfare”, illustrates the evolution of public perception towards science from a field of intellectual 

curiosity to one that enables economic efficiency and security in an increasingly complex world (Bush 

1945).  This profound change in how we view science and engineering has spurned the introduction 

of a new class of metrics and paradigms, such as cost-benefit analysis, to measure the value of new 

engineering technologies. 

Consequently, there have been several technologically innovative projects over the last half century 

that can be viewed as failures not because of poor engineering but, rather, because they did not meet 

ex-ante returns.  One well-documented example of this phenomenon is Motorola’s Iridium satellite 

infrastructure that was launched in the late 1990’s (de Weck and de Neufville 2004).  From a pure 

engineering perspective, the project was a great success; it provided global satellite phone coverage 

with significant quality gains as compared to competitors.  With that said, between the time of 
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inception and project completion consumer preferences shifted towards more lightweight and 

cheaper telecommunication alternatives.  Demand was much less than expected and, within just 9 

months of launching, the founding company had already filed for bankruptcy (de Weck and de 

Neufville 2004).  Motorola’s Iridium technology is just one example of a recurring theme found 

across a range of applications, from oil drilling to copper mining, where solid technical engineering 

is not suffice to meet today’s needs (Cardin, de Neufville et al. 2008; Lin, de Weck et al. 2013).  

Rather, engineers of today must also carefully consider (and meet) performance goals for relevant 

stakeholders in the design process. 

One approach that researchers are just beginning to utilize to maximize expected performance of 

large-scale engineering systems is real options analysis (Hastings and McManus 2004; Eckert, de 

Weck et al. 2009).  Real option analysis (ROA) applies the principles of financial options to 

engineering design by explicitly accounting for uncertainty and embedding flexibility in the design 

process (de Neufville and Scholtes 2011).  The ROA approach for engineering design is a stark 

contrast to the conventional method that assumes a fixed, deterministic future (Dixit and Pindyck 

1994).  In some ways, part of our hesitancy to adopt ROA in engineering design is tied to our natural 

tendency as humans to search for the optimal solution to the problem at hand.  However, ignoring 

the existence of uncertainty leads us to be both overconfident in our solution and constrains our 

decision space; for the more we recognize the doubt, the more cognizant we are about the possibility 

of underperformance and the more appreciative we are of the value to adapt.  As an example, if 

Motorola explicitly accounted for demand uncertainty, a more judicious strategy would have been 

to deploy satellites in stages so that (a) losses could be mitigated if demand did not materialize while 

(b) the capability would still exist to capitalize should the future have been more prosperous (Lin, de 

Weck et al. 2013). 

Pavement management systems, the focus of this thesis, are another example of decision-making 

tools that assume a deterministic future.  The importance of such systems continues to grow as state 

departments of transportation (DOTs) and municipality planning organizations (MPOs) search for 

effective ways to maintain an aging infrastructure network that spans more than 8.5 million lane-

miles and supports over 3 trillion vehicle-miles per year in the United States (Kuhn and Madanat 

2005; FHWA 2013; Zhang, Keoleian et al. 2013).   Unfortunately, similar to the cited examples, the 
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deterministic approach of existing tools come with several drawbacks.  First, current pavement 

management systems do not provide a mechanism to quantify risk, the consequence of that which 

is uncertain, in the decision-making process (Hastings and McManus 2004).  Second, and perhaps 

more importantly, the deterministic approach causes pavement engineers to be reactive, rather than 

proactive, towards uncertainty as it evolves.  Consequently, system managers disregard of 

opportunities to embed sources of flexibility in such systems that may be advantageous to deploy if 

future conditions unfold differently from expectations.  Therefore, the goal of this dissertation is to 

demonstrate that the explicit consideration of uncertainty not only provides a mechanism to capture 

risk of pavement preservation strategies, but also allows planners to quantify the value of potential 

sources of flexibility to increase system-wide performance. 

This dissertation presents one type of real option, the integration of a broader set of pavement 

materials and designs as part of a planning agency’s pavement preservation strategy.  Historically, 

DOTs across the nation have maintained and preserved their roadway networks by using asphalt-

based technologies almost exclusively.  Although effective, the cost of these actions are susceptible 

to large price swings from year to year due to the volatile nature of the underlying commodities 

(Swei, Gregory et al. 2016).  Consequently, planners, who are responsible for prioritizing roadway 

projects subject to available resources, are exposed to the downside risk should asphalt prices be well 

above their typical levels.  Alternatively, concrete-based pavement treatments, despite their extra cost, 

tend to exhibit less volatility and, generally, require less frequent maintenance activities.  As a result, 

the integration of concrete-based maintenance alternatives by an agency could potentially act as an 

insurance policy (more formally referred to as a put option) that planners can exercise at moments 

of spiraling asphalt prices coupled with stable/suppressed concrete prices (Black and Scholes 1973; 

Dixit and Pindyck 1994).   

To evaluate whether or not concrete-based maintenance and reconstruction alternatives are an 

effective put option for planning agencies, this thesis develops a stochastic simulation model that 

incorporates uncertainty as it relates to the deterioration of a roadway segment and the future cost 

of maintenance actions.  The future prices of commodities relevant for pavements are 

probabilistically projected through a hybrid forecasting model that convolves conventional forecasts 

for underlying constituent prices and a long-term price equilibrium relationship between 
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commodities.  The existing pavement management approaches described in the literature, as will be 

discussed at great length in Chapter 2, tend to be (a) computationally costly and not scalable to 

realistic problem sizes and/or (b) simplify a pavement system by removing material, traffic, and other 

roadway-specific information.  Because this research seeks to account for flexibility that arises from 

incorporating multiple paving materials within a pavement management program, a simple heuristic 

is needed that can account for heterogeneity amongst pavement segments and scale to real world 

contexts.  As such, this research uses a greedy algorithm for project prioritization.  The fidelity of the 

greedy algorithm is measured in Chapter 6 by comparing its solution for a series of small, 

deterministic case studies to that of a mixed-integer non-linear program (MINLP) solved with a 

branch and bound (B&B) algorithm that can find the global optimum.  Of course, a benefit besides 

the reduced computational complexity of the former algorithm is its ability to make sequential 

decisions over time as information becomes available to the decision-maker. 

The full model is subsequently applied to the state of Virginia’s interstate system, whose DOT 

traditionally maintains their pavement network with asphalt-based technologies only.  The objective 

of this case study is to minimize traffic-weighted roughness, a common metric of system performance, 

over a 50-year analysis period subject to a resource constraint.  Projected performance of the system 

with/without concrete-based technologies is presented via the cumulative distribution function 

(CDF) of outcomes.  Such an output allows one to compare the difference in system-level 

performance in terms of its expectation and Value at Risk (VaR).  The latter metric, as will be 

discussed in Chapter 7, provides a mechanism to quantify the ability of concrete-based alternatives 

to act as an insurance policy for a planning agency.  Additionally, Chapter 7 reports the reduction 

in annual budget needed by a planning agency to achieve the level of performance with a multiple 

pavement material system as it would need if it continued the status-quo maintenance policy.  Such 

a metric provides a mechanism to quantify the added value from the proposed source of flexibility. 

This dissertation is divided into four parts.  The following chapter of Part I reviews the current state 

of pavement management systems implemented by both practitioners and academics.  A focus is 

placed upon broadly understanding the key methodological and contextual differences of existing 

optimization-based approaches.  Part II, subsequently, develops novel approaches to estimate the 

exogenous information and system model that underlies the decision-making process for pavement 
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management systems.  These approaches lead to representative estimates of uncertainty for each 

input that influences the decision-making process.  Part III presents the heuristic algorithm 

implemented to determine the optimal allocation of resources in each year.  The solution of the 

heuristic approach is compared to that of a globally optimal solver for small, deterministic case 

studies to comment on its relative fidelity and computational complexity.  Part IV integrates the 

findings from Part II and Part III for the large-scale stochastic simulation model that tests the 

hypothesis set forth in this dissertation.  Lastly, Part V synthesizes the key conclusions and 

contribution of this work and sets forth a series of recommendations for future research activities 

amongst the pavement management community.  
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CHAPTER 2: REVIEW OF LITERATURE 

Motivation to integrate pavement management systems (PMS) in 
practice 

Federal and state transportation agencies currently stand at a crossroad.  Decreasing transportation 

funds, increasing maintenance needs, and a growing understanding of the relationship between 

design and the environment has led to a push for major reform within agencies to take a long-term 

perspective to transportation investments (Zhang, Keoleian et al. 2010; Santero, Masanet et al. 

2011).  Such concerns, which have haunted transportation agencies for decades, have historically 

only pushed a few departments of transportation (DOT) towards adopting asset management, the 

use of quantitatively based support tools in the planning and prioritization of infrastructure facilities 

(Markow 1995; Madanat, Park et al. 2006; Zhang, Keoleian et al. 2013).  These exceptions have 

included the states of Washington, which first began using simplified heuristics for allocation 

decisions in the early 1970’s, and Arizona, which introduced the first optimization-based approach 

a decade later (Golabi, Kulkarni et al. 1982; FHWA 2006).  The importance to integrate such systems 

within state DOTs has magnified, however, following the enactment of the Moving Ahead for 

Progress in the 21st Century (MAP-21) Act that now compels all state agencies to develop 

performance and outcome-based programs for the management of the national highway system (U.S. 

Congress 2012).  The goal of such legislation is to push DOTs to cost-effective allocation choices 

that provide a means to meet national transportation goals. 

Since the earliest management systems of the late 1960’s, which only processed and stored pavement 

condition information, pavement management systems as a whole have witnessed staggering 

developments (Markow 1995).  In general, the overarching theme across these studies is to search 

for a near-optimal, computationally tractable, allocation policy across a pavement network (de 

Neufville and Mori 1970; Medury and Madanat 2014).  Despite this commonality, the approaches, 

scopes, and objectives of some of the influential work in the field diverges in many directions.  As 

such, this chapter aims to benchmark the status-quo of current academic research in pavement 

management to facilitate a better understanding of the gaps and contribution of this dissertation.   
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A brief overview of pavement management 

As mentioned previously, pavement management is broadly defined as the planning, management, 

and preservation of a pavement segment (oftentimes denoted as facility and is used interchangeably 

in this thesis) or network using quantitative information (Mbwana 2001).  For a pavement network, 

AASHTO asserts that a pavement management system should determine a set of network priorities 

by making use of budget requirements, pavement distress data, and structural adequacy information 

(AASHTO 1990).  In many instances, pavement management systems follow a top-down approach 

in which pavement facilities are aggregated into groups with similar characteristics (Zimmerman 

1995).  The goal of such an approach is to determine the appropriate budget-level for a planning 

agency to meet its long-term performance objectives.  Increasingly, however, researchers have 

recognized the limitations of the top-down methodology in determining which pavement facilities 

should receive treatments, leading to the emergence of facility-specific models (Sathaye and Madanat 

2012; Yeo, Yoon et al. 2013; Medury and Madanat 2014).  Such models, theoretically, have an 

additional advantage of being able to account for the heterogeneous nature of pavement segments; 

however, as will be discussed later in this chapter, studies to date have yet to exploit this property. 

The following sections review over 30 years of academic research to facilitate an understanding of 

the contextual and methodological differences across existing studies.  This review includes both the 

earlier top-down studies and the more predominant facility-specific models of today.  In particular, 

this review focuses upon better understanding the role of uncertainty in pavement management 

given (a) the aims of this thesis and (b) that MAP-21 legislation now stipulates state DOTs to develop 

risk-based management plans for the effective maintenance of the national highway system (U.S. 

Congress 2012).  

Contextualization of previous research: objectives, constraints, and 
dimensionality  

Table 2-1 synthesizes the existing literatures as it relates to differences across four attributes, namely 

(a) objective functions (b) network constraints (c) number of facilities and (d) analysis period.  Studies 

presented are, for the most part, multi-period decision models that allow for the consideration of 

network performance over multiple years.  For that reason, many studies that have evaluated 
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important issues, such as the coordination of maintenance activities across multiple facilities, have 

been removed from this chapter (Fwa, Cheu et al. 1998; Ma, Cheu et al. 2004).   

Existing research generally focuses upon maximizing pavement performance and/or minimizing 

costs.  Although Table 2-1 differentiates between the two metrics, in reality the two objectives overlap 

with one another.  Specifically, previous cost minimization papers search to minimize both agency 

costs and those costs accrued by users, with the latter computed directly from pavement condition 

information (Guignier and Madanat 1999; Ouyang and Madanat 2004; Kuhn and Madanat 2005; 

Durango-Cohen and Sarutipand 2007; Kuhn 2010; Sathaye and Madanat 2011; Yeo, Yoon et al. 

2013; Medury and Madanat 2014).  Although the cost minimization problem is the preferred 

objective function amongst the academic literature for methodological reasons, the practical value 

of such an approach is limited given that the primary concern of DOTs is the structural condition 

of existing assets (Rangaraju, Amirkhanian et al. 2008).  It is worth noting that because 

“performance” is an ill-defined term that carries numerous connotations, several studies have 

interpreted its meaning differently.  Examples of performance oriented objective functions include 

travel time to users (Ng, Lin et al. 2009), average pavement service rating (PSR) (Wu and Flintsch 

2009), traffic-weighted average PSR (Li, Haas et al. 1998), greenhouse gas emissions (Zhang, Keoleian 

et al. 2013), safety (Melachrinoudis and Kozanidis 2002), and portion of segments in poor and/or 

excellent condition (Abaza, Ashur et al. 2004). 

Across existing studies, researchers generally seek to optimize their selected objective function subject 

to an annual financial resource constraint.  Slight nuances to this formulation have been proposed 

that allow for a decision-maker to carry over funds across years (Guignier and Madanat 1999).  

Although less common, some previous research constrain the decision space by only allowing a 

portion of pavements to be in a ‘poor’ state in a given year.  Beyond this, studies have incorporated 

serviceability and physical resource constraints, albeit sparingly.  Ferreira, Antunes et al. (2002), for 

example, allows no more than one major rehabilitation for each segment over the analysis period in 

order to reduce disturbances for users.  Fwa, Chan et al. (1996) incorporates constraints related to 

material, equipment, and labor availability in a given timeframe 
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Table 2-1. Comparison of objectives, constraints, analysis periods (∞ indicates infinite), network size, and number of actions in the existing literature. 

Study 
Objective(s) Constraint(s) Analysis Period (years) Number of 

Segments 
Number of 

Rehabs Cost Performance Other Budget Condition Other 1-10 11-20 >20 ∞ 

Golabi, Kulkarni et al. (1982) 9    9  9    

Pavement Segments are 
Aggregated in Top-Down 

Studies 

Carnahan, Davis et al. (1987) 9    9   9   
Chen, Hudson et al. (1996) 9 9  9 9   9   
Liu and Wang (1996)  9  9 9  9    
Wang and Liu (1997)  9  9 9  9    
Fwa, Chan et al. (1998) 9 9 9    9    
Pilson, Hudson et al. (1999)  9  9     9  
Abaza, Ashur et al. (2001)  9  9       
Smilowitz and Madanat (2000) 9   9 9   9  9 
Abaza, Ashur et al. (2004) 9 9  9   9    
Kuhn and Madanat (2005) 9   9   9    
Abaza (2007)  9  9       
Wang, Nguyen et al. (2007) 9 9  9 9  9    
Wu and Flintsch (2009) 9 9  9   9    
Gao, Xie et al. (2012) 9 9  9 9      
Gao and Zhang (2013) 9   9 9      
Chan, Fwa et al. (1994) 9 9  9 9   9   45 3 
Mbwana and Turnquist (1996) 9   9 9  9    60 4 
Li, Huot et al. (1997)  9  9   9    18 5 
Ferreira, Antunes et al. (2002)  9  9  9 9    9-254 6 
Wang, Zhang et al. (2003) 9 9  9 9  9    10 4 
Ouyang and Madanat (2004) 9   9   9 9 9  3 Continuous 
Chootinan, Chen et al. (2006) 9 9  9   9    53 4 
Durango-Cohen and Sarutipand (2007) 9   9   9    2-5 Continuous 
Ouyang (2007) 9   9     9  2 Continuous 
Kuhn (2010) 9   9     9  3-300 6 
Sathaye and Madanat (2011) 9   9      9 3 Continuous 
Gao and Zhang (2012) 9  9    9    5-1,000 1 
Sathaye and Madanat (2012) 9   9      9 1,000 Continuous 
Gao and Zhang (2013)  9  9   9    39,018 3 
Yeo, Yoon et al. (2013) 9   9    9   20-2,000 2 
Zhang, Keoleian et al. (2013) 9   9     9  29 8 
Medury and Madanat (2013) 9   9    9   11 3 
Medury and Madanat (2014) 9   9    9   10-1,000 2 
Zhou, Li et al. (2014)  9  9   9    672 1 
Chen, Henning et al. (2015) 9 9  9   9    699 1 
Lee and Madanat (2015) 9   9      9 2 2 
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In terms of scope of analysis, previous studies have implemented their formulations in a range of 

contexts that vary in terms of network size, time-horizon, and number of available maintenance 

actions.  Each of these factors have a latent implication on the computational complexity and, 

therefore, appropriateness of methodology.  The top-down methodology is particularly attractive 

from a computation standpoint given that it reduces a large pavement network to a few aggregate 

groups with similar characteristics.  The drawbacks of such an approach, however, is two-fold.  First, 

further subroutines are required for determining how to allocate across segments within a grouping.  

Second, the models implicitly assume that facilities within a grouping are homogenous, which is 

incorrect and can lead to sub-optimal allocation policies (Durango-Cohen 2007; Durango-Cohen 

and Sarutipand 2007).  These two flaws, coupled with increasing computation power of 

mathematical software programs, have largely contributed to authors developing facility-specific 

models.  Although many of the earlier models were developed for small pavement networks, more 

recent research has evaluated alternative heuristics that can scale for networks composed of 

hundreds of pavement segments (Kuhn 2010; Sathaye and Madanat 2012; Yeo, Yoon et al. 2013; 

Medury and Madanat 2014). 

The analysis period across the majority of studies typically falls into the category of short-term (1-10 

years) and medium-term (11-20 years), with the exception of a few papers (Ouyang and Madanat 

2004; Ouyang 2007; Kuhn 2010; Zhang, Keoleian et al. 2013).  This is interesting given that project-

level models, such as life-cycle cost analysis (LCCA), tend to assume a much longer time-horizon, 

illustrating the disconnect between the two approaches (Walls and Smith 1998).  As for available 

actions, studies have only considered a small subset (≤ 6) of the possible actions at the disposal of a 

state agency.  Furthermore, rehabilitation alternative types are fairly generic except for the cases of 

Chan, Fwa et al. (1994) and Zhang, Keoleian et al. (2013).  Alternatively, some studies only consider 

the predominant type of rehabilitation action, overlays, utilized by DOTs, allowing thickness to be 

a continuous function (Ouyang and Madanat 2004; Sathaye and Madanat 2011; Sathaye and 

Madanat 2012).  An important gap that emerges from this discussion is the inability and/or 

ignorance of the current research to account for the benefits of a larger set of maintenance and 

preservation alternatives.  Of course, as will be discussed in detail in the next section, part of the 
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decision to do so is tied to the inability of the existing methodologies to capture the benefit of having 

a broader range of options available in an uncertain future. 

Contextualization of previous research: methodology, uncertainty, and 
deterioration 

The following section compares and contrasts the existing work from a methodological standpoint.  

Table 2-2 summarizes the key trends and differences as they relate to (a) optimization methods (b) 

sources of variation and (c) pavement degradation models.   

Concerning optimization methods, existing studies have employed linear, integer, and dynamic 

programming, as well as genetic algorithms to determine an allocation policy over a planning 

horizon.  With that said, the majority of Markov top-down models exploit the structure of the 

problem such that linear programming can easily be implemented in a computationally efficient 

manner (Golabi, Kulkarni et al. 1982; Chen, Hudson et al. 1996; Liu and Wang 1996; Wang and 

Liu 1997; Smilowitz and Madanat 2000; Kuhn and Madanat 2005; Wu and Flintsch 2009).  The 

implementation of integer linear programming for facility-level decisions, however, is   

computationally costly, making the utilization of genetic algorithms, dynamic programming, and     

heuristics attractive alternatives.  Heuristic-based approaches include Ouyang and Madanat (2004),     

who implement a greedy algorithm to make locally best decisions throughout the analysis period, 

and Kuhn (2010), who uses adaptive (also referred to as approximate) dynamic programming (ADP). 

In general, facility-specific models apply a two-stage bottom-up approach for allocation choices.  In 

the first stage, an algorithmic approach is used to determine the best set of policies for each facility.  

Subsequently, a network-level model selects the facilities to receive treatment via a knapsack 

approach, where the best projects are selected until there are no remaining funds in a given year 

(Yeo, Yoon et al. 2013; Zhang, Keoleian et al. 2013).  As eluded to earlier, researchers prefer the cost 

minimization problem because it easily lends itself to dynamic programming for the two-stage 

bottom-up technique.   Specifically, the first stage searches for the optimal maintenance action, a, 

that minimizes the total cost for the nth pavement segment.  The total cost of an action is a function  
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Table 2-2. Optimization methods, sources of variation, and deterioration assumptions of existing models. 
 

Study 
Optimization Method Deterioration Model Other 

Sources of 
Variation 

 
LP/ILP NLP GA DP Others/Notes 

Homo 
Markov 

Hetero 
Markov 

Continuous 
T

op
-D

ow
n 

St
ud

ie
s 

Golabi, Kulkarni et al. (1982) 9     9    
Carnahan, Davis et al. (1987)    9  9    
Chen, Hudson et al. (1996) 9     9    
Liu and Wang (1996) 9     9    
Wang and Liu (1997) 9     - - -  
Fwa, Chan et al. (1998)   9   9    
Pilson, Hudson et al. (1999)   9     9  
Abaza, Ashur et al. (2001)  9    9    
Smilowitz and Madanat (2000) 9        Condition 
Abaza, Ashur et al. (2004)  9    9    
Kuhn and Madanat (2005) 9    Robust LP 9    
Abaza (2007)  9    9    
Wang, Nguyen et al. (2007)   9   9    
Wu and Flintsch (2009) 9     9   Budget 
Gao, Xie et al. (2012)  9    9    
Gao and Zhang (2013) 9     9    

Fa
ci

lit
y-s

pe
ci

fic
 m

od
el

s 

Chan, Fwa et al. (1994)   9     9  
Mbwana and Turnquist (1996) 9     9    
Li, Huot et al. (1997) 9      9   
Ferreira, Antunes et al. (2002) 9  9   9    
Wang, Zhang et al. (2003) 9     9    
Ouyang and Madanat (2004) 9    Greedy Heuristic   9  
Chootinan, Chen et al. (2006)   9     9 Traffic 
Durango-Cohen and Sarutipand (2007)    9    9  
Ouyang (2007)    9    9  
Kuhn (2010)    9 Approximate DP   9* Benefit  
Sathaye and Madanat (2011)  9   Lagrangian dual   9  
Gao and Zhang (2012) 9     - - -  
Sathaye and Madanat (2012)  9   Lagrangian dual   9  
Gao and Zhang (2013) 9     9    
Yeo, Yoon et al. (2013)    9  9    
Zhang, Keoleian et al. (2013)    9    9  
Medury and Madanat (2013)     Approximate DP 9    
Medury and Madanat (2014) 9     9    

 Zhou, Li et al. (2014) 9     - - -  
 Chen, Henning et al. (2015) 9       9  
 Lee and Madanat (2015)   9 9    9  
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of its immediate cost, Ct, and discounted cost-to-go, E[Vt+1], to the agency and user assuming in all 

future years the DOT continues to maintain the segment optimally.  The optimal policy for each 

segment,Vt, is implicitly a function of the current state of the pavement segment, St.  Based upon the 

above description, a simple dynamic program can be scripted that solves recursively for the optimal 

policy for each pavement segment per: 

 𝑉𝑡(𝑆𝑡) = min
𝑎∈𝐴

𝐶𝑡(𝑎𝑡)+E [𝑉𝑡+1(𝑆𝑡+1(𝑆𝑡, 𝑎𝑡))]  

The framing of the problem in a cost-minimization (to the agency and user) framework leads to a 

non-trivial optimal maintenance policy despite the exclusion of the budget constraint at the facility-

level.  For example, when a segment is in poor condition, it is likely that it is worthwhile for the 

agency to apply a maintenance action, as its cost is less than the cost that the users of the facility are 

accruing at that moment in time.  Conversely, if a facility is already in excellent condition, it is of 

little benefit for the agency to rehabilitate the segment, as the cost of any action is higher than current 

user costs.  Subsequently, the optimal policy for the facility, in spite of the exclusion of a budget 

constraint, will involve maintenance actions in only some years across the planning horizon.   

However, if one were to implement a performance-based optimization approach using the same 

paradigm, the optimal policy will be to apply a maintenance action in all years across all segments, 

unrealistic in a resource-constrained world.  As a result, the cost-minimization paradigm is the 

preferred approach among the recent academic literature, while few algorithmic techniques exist for 

the facility- specific performance maximization problem.  Of course, from a practitioner standpoint, 

the user cost framework is of little interest given that the structural condition of the existing 

pavements is the overwhelming priority of planning agencies (Rangaraju, Amirkhanian et al. 2008).  

Clearly, heuristics are needed that can help planning agencies implement a bottom-up framework 

with performance as the objective function. 

A secondary drawback of the current bottom-up approach (particularly in the dynamic programming 

framework) is that it ignores that a facility will likely be unable to follow its optimal policy due to 

future budgetary constraints on the network.  Medury and Madanat (2014) implemented a 

methodology to overcome this issue by integrating the facility-specific dynamic programming 

approach with the typical top-down formulation.  The authors of this study developed a mixed-



 

26 
   

integer linear program where decisions for the facilities in the current year have an impact on the 

portion of pavements in a given condition in future years.  More simply put, one makes facility-level 

decisions today but the future is treated using the Markov top-down approach.  The issue remains, 

however, that similar to traditional top-down approaches, the model assumes that segments are 

homogenous going forward. 

Amongst both top-down and bottom-up studies, the literature generally consider uncertainty only as 

it relates to pavement deterioration.  For these studies, Markov chains are used, where the 

probabilistic deterioration in the next period is only a function of the current state (e.g., pavement 

condition) of a segment.  Uncertainty in pavement deteriorates is, therefore, purely aleatory, as 

deterioration is random and not due to any causal factors.  Li, Huot et al. (1997) and Li, Haas et al. 

(1998) are the only two Markov decision process studies that attempt to address this issue by creating 

transition probability matrices that are a function of the structural design of the pavement and 

external factors such as traffic and climate.  Madanat, Park et al. (2006) developed age-dependent 

transition probabilities, although they only implement their methodology in a project-level model.   

On the other hand, studies that take into account the heterogeneous nature of pavements utilize 

deterministic, continuous functions that describe the process as a function of structural and 

environmental factors (Chan, Fwa et al. 1994; Pilson, Hudson et al. 1999; Chootinan, Chen et al. 

2006).  As noted by Durango-Cohen and Sarutipand (2007), a balance between the two extremes 

should be found in network-level research by using the insights from the pavement deterioration 

community (Aguiar-Moya, Prozzi et al. 2011; Khattaka, Landrya et al. 2013; Hong and Prozzi 2015). 

Beyond pavement deterioration, however, few studies have accounted for other sources of 

uncertainty in the decision-making process.  Smilowitz and Madanat (2000) extend the latent 

Markov decision process (LMDP) methodology developed by Madanat and Ben-Akiva (1994) for the 

integration of uncertainty in the measurement of pavement condition.  Kuhn (2010) considers 

uncertainty in the benefit of a given treatment.  Wu and Flintsch (2009) transform the stochastic 

uncertainty in future budget levels into a deterministic constraint, while Chootinan, Chen et al. 

(2006) utilize the same approach but this time for uncertainty in future traffic volumes for pavement 

segments.  The latter two studies, although being the first two papers that consider sources of 
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uncertainty outside of the pavement engineer’s control, do so using a static approach.  Consequently, 

the optimization paradigm outputs a highly conservative, risk-averse policy that might perform much 

lower, in terms of expectation, compared to a policy that sequentially makes decisions as information 

becomes available over time.  

Pavement management summary and limitations 

Pavement management is a mature field that has evolved since the introduction of the earliest 

systems almost a half century ago. Whereas the previous sections have shed some light on the state-

of-the-art for pavement management, the remainder of Part I summarizes the work discussed and 

sets forth the specific gap that this thesis aims to address.   

Existing pavement management research has primarily focused upon developing optimization-based 

techniques for either performance maximization of roadway segments and/or minimizing total costs 

subject to, most commonly, a financial constraint; defining performance is difficult to do as its 

definition is multifarious.  An issue with the cost minimization approach is that although it provides 

an attractive mathematical framework for optimization, practitioners are far more interested in 

roadway conditions than user costs (Rangaraju, Amirkhanian et al. 2008).  Additionally, the cost-

based paradigms require strong assumptions regarding the relationship between pavement condition 

and user costs, something that is quite difficult to estimate despite several empirical endeavors 

(Vadakpat, Stoffels et al. 2000).  

Regardless, an important trend that emerged from the previous discussion is that the dimensionality 

of problems has increased gradually over time, starting with earlier top-down approaches that allocate 

resources to groups of segments and gradually moving towards facility-specific models.  Drawbacks 

of the top-down approach include the need for further sub-processes and the treatment of 

heterogeneous  segments as homogenous, and so facility-specific models are just beginning to emerge 

for roadway networks composed of many pavement segments.  With that said, although recent 

paradigms are able to accommodate a larger number of segments, the assumption of homogeneity 

across facilities and the reality that only a few possible maintenance actions are captured in such 

frameworks are shortcomings of existing work.   
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Another important methodological deficiency of previous research is the general exclusion of 

uncertainty other than as it relates to pavement degradation.  The decision to do so, in many ways, 

is contradictory to the project-level models that DOTs are beginning to use that do account for other 

sources of variation in the decision-making process (Swei, Gregory et al. 2016).  Furthermore, the 

few studies that have considered other sources of variation have done so through a static, highly 

conservative approach that significantly reduces expected performance over time.  Table 2-3 

synthesizes the main gaps that have been discussed up until now. 

Table 2-3. List of gaps within existing pavement management systems. 

Issue Gaps 

Objective Functions � Objective functions amongst academic work do not necessarily 
correspond to the concerns of decision-makers 

Dimensionality 

� Models generally assume a homogenous, rather than heterogeneous, 
system 

� Number of rehabilitation activities are not representative of the available 
options available to a DOT 

� Time-horizon is designed for the short-term rather than long-term 

Sources of Uncertainty � Uncertainty only incorporated as it relates to deterioration 

Optimization Method 

� Approaches for optimization of large networks are designed for cost-
minimization and not performance maximization 

� Frameworks that account for a broader range of sources of uncertainty are 
static rather than dynamic 

Deterioration Model 
� Deterioration models either assume all variation is aleatory and assume 
segments are homogenous or account for heterogeneity but assume 
deterioration is deterministic  

Dissertation focus and overview 

The previous discussion illustrates that there are many opportunities to augment current pavement 

management systems.  Having said that, this dissertation centers around the inclusion of uncertainty 

in pavement management and its implication on the decision-making process. Studies to date have 

generally excluded exogenous sources of uncertainty, such as sudden changes in budgetary levels or 

the cost of maintenance actions over time, in determining an optimal allocation policy.  The decision 
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to do so stems from the prevailing view that planners and designers have little control over such 

random shocks over time.  Contrary to popular perception, however, this thesis postulates that there 

are opportunities in which designers can embed flexibility in the maintenance of pavement 

management system to proactively deal with such instances and improve expected system 

performance.  One possible way to do so is by incorporating a broader and more diverse group of 

pavement maintenance alternatives in the decision-making process.  

On the surface, it may seem that the hypothesis set forth in this dissertation overlaps with the 

concept of diversification within modern portfolio theory.  Namely, that holding a group of financial 

instruments not perfectly correlated with one another reduces one’s exposure to downside risk by 

shifting the outcome probabilities (Markowitz 1952).  While these benefits may in fact be real, this 

thesis does not explore this source of benefit explicitly.  Rather, this dissertation views that that the 

incorporation of a broader range of material and design maintenance activities by a planning agency 

should be viewed more so as a real option.  Decision-makers have the right, though not the 

obligation, to change maintenance strategies as information becomes available, similar to the 

underlying concept of a real option (Cardin, de Neufville et al. 2008; Eckert, de Weck et al. 2009; 

Cardin 2011).  By having a larger range of materials and designs at their disposal, planning agencies 

are better able to adapt to the trajectory of their network should drastic shocks occur to the status-

quo.  There are numerous examples across the academic literature, from the positioning of military 

equipment to the management of electric power grids, where the ability to alter decisions over time 

as information becomes available can enhance expected performance (Powell 2007).      

Of course, the incorporation of flexibility via real options requires an overhaul of the current method 

used in pavement management systems.  Rather than following a static approach, as was the case in 

Wu and Flintsch (2009), ROA builds upon the principals of stochastic control theory where 

decisions are changed as real-time information becomes available to the system manager.  Most 

frequently, researchers develop stochastic simulation models to quantify the value of flexibility (de 

Neufville and Scholtes 2011).  It is important to note that such stochastic simulation models are not 

only restricted to engineering systems; in fact, the same frameworks have been applied to traditional 

financial options (Longstaff and Schwartz 2001).  Figure 2-1 presents a schematic of the real options 

approach through a typical simulation model.   
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Figure 2-1. Schematic of sequential decision-making under uncertainty 

   
As in stochastic control theory, there are six important components for the modeling framework: 

x The state variable, 𝑆𝑡, captures all information about the current state of our system 

x The decision variable, 𝑥𝑡, is the set of actions that the decision-makers applies to manage 

their system, which is a subset of the total available actions (Xt).  The decisions selected are 

based upon the underlying objective function of the model and subject to a set of 

constraints. 

x  The exogenous information, 𝑊𝑡+1, is that which becomes available between the time of the 

decision and the following year 

x Lastly, the system model, 𝑆𝑀,𝑊(𝑆𝑡
𝑥,𝑊𝑡+1), maps how the system evolves between time 

periods.  This is, inherently, not only a function of the system state, but also the decision 

variable and exogenous information. 

From the above schematic, it is paramount that the stochastic simulation model is composed of (a) 

a “sound” system model (b) reasonable estimates of the exogenous information and (b) a near-

𝑆𝑡+1 = 𝑆𝑀,𝑊(𝑆𝑡
𝑥,𝑊𝑡+1) 

𝑆𝑡 𝑥𝑡 ∈ 𝜒𝑡 

System Model 

𝑆𝑡
𝑥 = 𝑆𝑀,𝑥(𝑆𝑡, 𝑥𝑡) 

𝑊𝑡+1 

Decision Variable 
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optimal allocation policy.  The following two sections address these two core elements.  Part II 

presents the methodology and parametric estimates for the former two elements that enter the 

stochastic model, while Part III details the allocation policy and tests its overall fidelity.  Part IV 

utilizes both of these components in the complete stochastic simulation model to evaluate the ability 

of incorporating a larger range of materials and designs to improve performance across a pavement 

network.  As mentioned earlier, this thesis postulates that the inclusion of concrete-based alternatives 

within a pavement management program can act as a put option.  As a result, one would expect that 

the benefit of incorporating concrete-based designs arises from its ability to mitigate poor 

performance in the case of an unfavorable future.  
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II. SYSTEM MODEL AND EXOGENOUS 
INFORMATION 

SYNTHESIS 

The purpose of Part II is to develop novel approaches to estimate exogenous information that 

underlies the decision-making process for pavement management systems as well as an appropriate 

system model. Chapter 3 postulates a new pavement deterioration model for pavement management 

systems.  Current deterioration models for network analyses use either homogenous Markov chains 

that do not capture the differences across pavement segments or continuous deterministic functions 

that do not reflect the uncertainty in the pavement degradation process.  Furthermore, the more 

sophisticated deterioration models integrated into project-level tools are computationally expensive 

for network-level models, require data not available in planning agency databases, and incorrectly 

specify the pavement degradation process by assuming that stochastic shocks are transitory.  As such, 

a simple, correctly specified probabilistic pavement deterioration model is proposed that accounts 

for the heterogeneity across roadway segments with factors that are available in planning agency 

databases.  Chapter 4 subsequently presents a parametric approach to estimate the cost of alternative 

maintenance actions available to a planning agency.  Results from this chapter demonstrate that the 

proposed approach frequently leads to consistent parametric estimates that address the structure 

bias and heteroscedasticity that plague current cost-estimation procedures.  Lastly, Chapter 5 

presents a novel approach to forecast the probabilistic cost of future maintenance actions.  The 

chapter focuses on forecasting future paving material prices given that they are the dominant cost 

driver of pavement maintenance actions.  A hybrid forecasting approach is introduced that combines 

traditional forecasts for underlying constituent prices and a long-run price equilibrium between 

those constituents and pavement materials. 
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CHAPTER 3: PAVEMENT DETERIORATION 

Introduction to deterioration models 

Pavement management systems, which are used by planners to determine an allocation policy across 

a network of pavement facilities (e.g., segments), require computationally resource-efficient 

pavement deterioration models that also accurately represent the degradation process (Durango and 

Madanat 2002).  Interestingly, the current deterioration models integrated into such systems take 

contradictory views towards the pavement degradation process and its evolution over time.  In 

particular, there is discrepancy amongst researchers regarding the degree to which variation is 

aleatory or epistemic and, furthermore, whether sudden stochastic shifts are transitory or 

permanent.  As a result, the purpose of this chapter is to shed some light on the proper approach to 

specify its progression over time, something of utmost importance to ensure the allocation policies 

embedded within pavement management systems are optimal. 

A simple, parsimonious deterioration model is proposed that assumes the pavement degradation 

process follows a random walk with drift.  The drift term, which affects the directionality of 

deterioration over time, is a function of a non-linear interaction between pavement age, design, and 

traffic volume.  An empirical model is subsequently developed for pavement roughness, a common 

deterioration mechanism that planning agencies seek to minimize across a roadway network.  Results 

from the analysis indicate that such a model may appropriately specify the pavement deterioration 

process, implying that some, but not all, of the variability is epistemic and, furthermore, stochastic 

shifts have long-term effects on roadway roughness in the future.   

Current modeling approaches 

This section provides a brief overview of the existing Markov and regression-based pavement 

degradation models integrated within existing pavement management systems before comparing and 

contrasting their underlying assumptions. 
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Markov Chains 

The most common modeling paradigm amongst current pavement management research is to 

assume that pavement allocation choices follow a Markov decision process (MDP) (Abaza, Ashur et 

al. 2004; Gao and Zhang 2013; Yeo, Yoon et al. 2013).  The affinity of researchers to model the 

decision-making process as an MDP stems from the attractive mathematical properties that allow for 

an efficient solution to a complex problem via dynamic programming (Bellman 1957).  Pavement 

management MDPs typically utilize a single transition probability matrix for all roadway segments, 

where the deterioration state of a pavement in year t+1, St+1, is only a function of its condition in 

year t, St.  The condition of each pavement segment, which in reality follows a continuous function, 

is discretized into n states.  For computational reasons, the number of discretized states is usually no 

more than 5-8 (Smilowitz and Madanat 2000).  Given the condition, i, of a pavement segment in 

year t, the only states that a pavement can transition to with non-zero probability in year t+1 is its 

current condition, i, and i+1, where a lower condition index is associated with a better pavement.  

A more succinct representation of the above description is shown here: 

 

P(𝑆𝑡+1|𝑆𝑡) =

[
 
 
 
P11 P12
0 Pi,i

0 0
Pi,i+1

0
⋱ Pn−1,n

Pn,n ]
 
 
 
             (3.1) 

Despite being mathematically attractive, an important consequence of modeling the pavement 

degradation process with a homogenous Markov transition probability matrix is that such an 

approach does not capture the heterogeneity across pavement facilities (Durango-Cohen and 

Sarutipand 2007).  In other words, all of the variation in pavement deterioration across roadway 

segments is assumed aleatory even though several explanatory factors related to the design of a facility 

as well as environmental conditions (e.g., traffic, climate) affect its evolution over time (Aguiar-Moya, 

Prozzi et al. 2011).  Furthermore, the assumption of homogenous pavement deterioration across 

roadway segments influences the framing of the network-level problem, as design-specific 

considerations cannot be captured by the decision-variables within the model.  The latter point is 

potentially of great significance given that the optimal policy to maintain a pavement segment is 

closely tied to context-specific information (Chan, Fwa et al. 1994).  Consequently, although the 
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assumption of homogeneity further simplifies the network-level problem, a sufficient amount of 

pavement-specific information is removed from the analysis such that the model is susceptible to 

selecting a sub-optimal maintenance policy (Embacher and Snyder 2001).  As a result, a smaller body 

of network-level research integrates continuous, regression-based deterioration models to account 

for heterogeneity across pavement segments (Chan, Fwa et al. 1994; Ouyang and Madanat 2004; 

Chootinan, Chen et al. 2006). 

Regression-based models 

The majority of regression-based models are of the general form: 

 𝐷𝑡𝑓 = 𝐷𝑡0 + 𝑓(𝑋1, 𝑋2,… , 𝑋𝑛)             (3.2) 

where the distress, D, of a pavement segment at any future time period, tf, is a function of its distress 

level in the present, t0, and n explanatory variables, Xn.  Covariates incorporated in such studies are 

usually limited to pavement age, material, and thickness as well as roadway traffic, which are all 

viewed as the most influential factors in the pavement degradation process (Chan, Fwa et al. 1994; 

Ouyang and Madanat 2004; Chootinan, Chen et al. 2006).  In many ways, these distress models are 

simplified versions of some of the more advanced analytical models that have been developed at the 

project-level (Prozzi and Madanat 2004; Aguiar-Moya, Prozzi et al. 2011; Hong and Prozzi 2015).  

The most sophisticated of such models is the recently introduced pavement mechanistic empirical 

design (Pavement-ME), which makes use of data collected by the Federal Highway Administration 

(FHWA) as part of their long-term pavement performance (LTPP) program (Wang, Zhang et al. 

2011).  Such deterioration models, despite their computational cost, have been introduced in a 

modified form in FHWA’s Pavement Health Track (PHT) to provide an estimate of the remaining 

service life (e.g., expected time to failure if no future maintenance events were to occur) of all 

pavement segments across a roadway network (FHWA 2013). 

The discrepancies between the Markov-based and regression-based models 

The Markov-based and regression-based deterioration models take, as is quite evident, divergent 

stances towards modeling the pavement degradation process.  MDPs assume that no explanatory 

variables can account for variation in the pavement degradation process and, perhaps more 
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importantly, that stochastic changes in the system state have a permanent effect on future outcomes.  

Put another way, a sudden change in the state of a pavement in an MDP affects pavement condition, 

if untreated, in all future years.  Regression-based models, on the other hand, assume that variation 

is either partly epistemic, as is the case at the project-level, or completely epistemic at the network-

level.  The latter point is evident in Equation 3.2, where no error term is present within the model 

specification.  Furthermore, even when uncertainty is incorporated at the project-level, the existing 

deterioration models are specified such that stochastic shocks are assumed to dissipate over time 

(Lee, Mohseni et al. 1993; Aguiar-Moya, Prozzi et al. 2011; Mandapaka, Basheer et al. 2012).   

 
Figure 3-1. Typically assumed evolution of pavement roughness over the life of a segment (Ouyang and Madanat 

2006). 

To make this point clear, suppose that the deterioration of a pavement follows Figure 3-1, where the 

absolute rate of deterioration increases over time (Ouyang and Madanat 2006).  For the purpose of 

simplification, suppose that pavement degradation, Dt, increases at some compound rate, r.  Let it 

be also be assumed that innovations (i.e., shocks) in the time-series, εt, are structurally unbiased such 

that there is no need to model them as an autoregressive moving average (ARMA) process. Two 

alternative specifications of pavement deterioration could therefore be: 

 Specification 1: 𝐷𝑡 = 𝐷0𝑒𝑟𝑡𝜀𝑡            (3.3a) 

 Specification 2: 𝐷𝑡 = 𝐷𝑡−1𝑒𝑟𝜀𝑡            (3.3b) 

Although the two specifications may seem equivalent, they in fact make two completely different 

assumptions about the pavement degradation process.  Taking the logarithm of the two proposed 
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specifications in Equation 3.3, one finds that in Specification 1 stochastic shocks are assumed to be 

transitory, while in Specification 2 innovations have a permanent effect on future outcomes.   

 Specification 1: ln(𝐷𝑡) = ln(𝐷0) + 𝑟𝑡 + ln(𝜀𝑡)            (3.4a) 

 Specification 2: ln(𝐷𝑡) = ln(𝐷0) + 𝑟𝑡 + ∑ ln(𝜀𝑡)𝑡
𝑖=1             (3.4b) 

Specification 1 can be referred to as a trend-stationary process, where if the time-series is detrended, 

the residuals form their own stationary process (e.g., constant statistical properties).  The assumption 

that pavement deterioration is a trend-stationary process underlies the previously cited regression-

based models at the project and network-level.  Such an assumption supposes that sudden shocks in 

the deterioration of a pavement dissipate by the next period.  As a result, the variance of pavement 

degradation over time is expected to remain constant in terms of its levels.  Conversely, Specification 

2 assumes that the sudden propagation of rutting or cracking along a roadway segment does not 

suddenly vanish.  Rather, these sudden shocks influence the deterioration level of a pavement in all 

future years.  Such a proposition is closely aligned with the Markovian assumption that underlies 

the prevalent network-level models.  Because the variance increases over time, making the process 

non-stationary, Specification 2 can be reformulated into a stationary process by estimating it in terms 

of its difference (hence, Specification 2 is coined a difference-stationary process): 

 Reformulated Specification 2: 
𝐷𝑡

𝐷𝑡−1
= 𝑒𝑟𝜀𝑡            (3.5a) 

 Reformulated Specification 2: ∆ln(𝐷𝑡) = 𝑟 + ln(𝜀𝑡)            (3.5b) 

Gap Analysis and Chapter Objectives 

The previous discussion illustrates the ambiguity regarding the proper specification for pavement 

deterioration amongst the current literature.  Typical regression-based models assume that sudden 

changes in deterioration are transitory over time.  MDPs, on the other hand, assume that all variation 

across segments is aleatory and, furthermore, that stochastic shocks have a permanent effect on all 

future periods.  Furthermore, the decision on how to specify the pavement degradation process not 

only has far-reaching implications on allocation support tools at the network-level, but also the 

project-level.   In particular, given that planners traditionally construct new roadway segments so 

that the probability of failure is less than a critical value over a prescribed design life, it is imperative 
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that pavement engineers are provided accurate estimates of the evolution of degradation and its 

uncertainty (Mandapaka, Basheer et al. 2012); the specification of pavement degradation implicitly 

influences that estimate. 

As a result, this chapter evaluates the appropriate specification of the pavement deterioration process 

through the development and testing of a parsimonious degradation model.  The analysis augments 

previous empirical findings that, although not explicitly stated, provide some elementary insight as 

to the correct model specification for pavement deterioration. These studies include Chu and 

Durango-Cohen (2008) and Ahmeda, Abu-Lebdeha et al. (2006), who assume that pavement 

deterioration follows a first-order autoregressive process with a set of explanatory covariates.  From 

the previously mentioned studies, the estimation of the autoregressive component offers preliminary 

evidence regarding the appropriate specification of pavement degradation.     

To illustrate this point, let it be assumed that the exogenous components of the models described 

can be embedded within r that, as defined previously, affects the directionality of the stochastic 

process over time.  The models developed by Chu and Durango-Cohen (2008) and Ahmeda, Abu-

Lebdeha et al. (2006) can subsequently be represented as: 

 𝐷𝑡 = 𝑟 + 𝜌1𝐷𝑡−1 + 𝜀𝑡            (3.6a) 

 (1 − 𝜌1𝐿1)𝐷𝑡 = 𝑟 + 𝜀𝑡            (3.6b) 

where ρ1 is the coefficient estimate for the one lag deterioration value.  Equation 3.6b is the same as 

Equation 3.6a but in lag polynomial notation, where Li is the ith lag operator.  The characterization 

equation and its roots, which can be used to determine whether the stochastic process is stationary, 

is then simply: 

 1 − 𝜌1𝑧1 = 0            (3.7a) 

 𝑧∗ = 1 𝜌1⁄             (3.7b) 

where z is the variable of the characteristic equation and z* is the single characteristic root for the 

stochastic process.  In order for a stochastic process to be dynamically stable (i.e., stationary), the 

characteristic root must lie outside of the unit-root circle, meaning that |ρ1|< 1.  Interestingly, first-

order autoregressive coefficient estimates for Chu and Durango-Cohen (2008) are 0.98 and 0.995 
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for two alternative estimations while Ahmeda, Abu-Lebdeha et al. (2006) estimate coefficients that 

range from 1.06 to 1.37 depending upon the paving material, suggesting that the prevalent trend-

stationary specification of regression-based models may be incorrect.  The goal of this chapter, 

therefore, is to develop of a novel estimation procedure that can confirm the appropriate 

specification of pavement degradation for any mechanism of interest to a pavement engineer or 

planner. 

Methodology 

This section describes the data collected as part of this study, the proposed specification of pavement 

roughness, and the technique used to evaluate its appropriateness. 

Description of Data 

This chapter utilizes historical pavement distress, design, and environmental data collected as part 

of FHWA’s LTPP project (FHWA 2016).  Because pavement management systems make decisions 

annually over a defined time-horizon and, furthermore, the pavement degradation process is 

potentially autoregressive, only consecutive annual measurements (plus or minus a month) are 

preserved from the original dataset.  This filtering procedure reduces the sample size available for 

statistical analysis such that only two lagged periods are considered.  A benefit of evaluating evenly-

spaced pavement distress data over time is that there are no concerns regarding the implication of 

seasonality on the degradation process (Prozzi and Madanat 2004).  Furthermore, the authors 

remove sample outliers that arise due to measurement error. 

Although the deterioration of a pavement facility encompasses multiple mechanisms, existing 

network-level research typically utilizes either a weighted composite index or a single mechanism to 

characterize the overall condition and/or ride quality of a roadway segment (Chen, Hudson et al. 

1996; Liu and Wang 1996; Zhang, Keoleian et al. 2013).  Research has demonstrated that pavement 

roughness, which is also strongly correlated with other distress mechanisms, provides a reasonable 

metric to estimate the ride quality and general condition of a roadway (Garg, Horowitz et al. 1988).  

As a result, this study only focuses on developing pavement degradation models as it relates to 

roughness, measured in terms of the international roughness index (IRI), of LTPP sections. 
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Model Specification 

The development of a pavement degradation model that fits within existing network-level pavement 

management systems requires the omission of several factors that influence the deterioration 

process.  The decision to eliminate such factors is not only for computational resource 

considerations, but also because many explanatory variables that underlie deterioration models such 

as Pavement-ME are not stored within existing pavement management databases (Lea and Harvey 

2004).  Therefore, this research implements a pavement roughness model that is only a function of 

the age, average annual daily truck traffic (AADTT), and structural number (SN)/thickness of a 

pavement.  Previous findings suggest that these factors are some of, if not the most, influential factors 

in the pavement degradation process (Lee, Mohseni et al. 1993).  The structural form of the model 

proposed overlaps conceptually with that of Lee, Mohseni et al. (1993) and is as follows: 

 ∆𝐷𝑡,𝑖 = 𝛼𝐴𝑔𝑒𝑡−1,𝑖𝐴𝐴𝐷𝑇𝑇𝑡−1,𝑖
𝛽1 𝑆𝑁𝑡−1,𝑖

𝛽2 + 𝜀𝑡,𝑖            (3.8) 

Equation 3.8 is specified under the null hypothesis that pavement degradation follows a random 

walk with drift.  ΔDt is the first difference of pavement degradation at time t, εt are the innovations 

for each ith sample, and α, β1, β2, β3 are parametric estimates that capture the relationship between 

changes in pavement degradation and the non-linear interaction between pavement age, AADTT, 

and SN/thickness in the previous time period.  Note that the model makes the assumption that the 

drift term increases linearly as the pavement ages, which will lead to the traditional degradation 

curve shown in Figure 3-1.  Three separate models are estimated for hot mix asphalt (HMA), jointed 

plain concrete (JPCP), and composite pavements.  Pavement deterioration is estimated in terms of 

its absolute rather than logarithmic differences (and hence, pavement age is incorporated as a 

covariate for the regression model) to allow the model to capture the cumulative impact of 

environmental conditions following a maintenance action.  In other words, if there was no age term 

in the deterioration model, a network allocation tool would assume that maintenance actions reset 

a pavement to its initial condition in terms of both levels and deterioration rate.   In reality, a 

maintenance action shifts the immediate state of a pavement but structural damage from previous 

years will influence the rate of degradation moving forward.  
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Testing of Model Specification 

The null hypothesis in this research is that pavement deterioration is a difference-stationary process, 

contrary to the typical assumption of regression-based models.  A novel method is proposed in this 

study that pavement engineers and researchers can begin to utilize to determine the appropriate 

structural form for pavement deterioration models.  The method set forth extends the concept of 

variance ratio tests that the finance and economics community utilize to test for unit-roots and the 

persistence of shocks in a stochastic process (Lo and MacKinlay 1988).   

Suppose that pavement degradation over time were to follow the random walk with drift model 

discussed previously.  The model assumes that the random error of the process is Gaussian 

distributed with a constant variance, σ2, over time (e.g., homoscedastic): 

 ∆𝐷𝑡 = 𝛼𝐴𝑔𝑒𝑡−1𝐴𝐴𝐷𝑇𝑇𝑡−1
𝛽1 𝑆𝑁𝑡−1

𝛽2 + 𝜀𝑡~𝑁(0, 𝜎2)            (3.9) 

The variance of the differenced process, 𝜎∆𝐷𝑡
2 , if unbiased can be estimated as: 

 
𝜎∆𝐷𝑡

2 =
1

𝑛 − 1
∑(∆𝐷𝑡,𝑖 − (𝐴𝑔𝑒𝑡−1,𝑖𝐴𝐴𝐷𝑇𝑇𝑡−1,𝑖

𝛽1 𝑆𝑁𝑡−1,𝑖
𝛽2 ))2

𝑛

𝑖=1

 
           

(3.10) 

where n is the available sample size for parameter estimation.  For a difference-stationary process, 

the change in levels over Q periods is simply the summation of the stochastic shifts made along each 

point in time:   

 

 ∆𝐷𝑡(𝑄) = ∑ ∆𝐷𝑡−𝑞+1

𝑄

𝑞=1

            (3.11) 

Consequently, the variance over Q periods, 𝜎∆𝐷𝑡(𝑄)
2 , is directly related to the covariance matrix for 

the Q differences in Equation 3.11.  As mentioned previously, the LTPP dataset has a limited 

amount of data that is spread out evenly and consecutively over time.  As a result, one can only look 

at the change in deterioration spread out over at most two time periods consecutively (e.g., Q = 2).  

Based upon Equation 3.11, the variance of the change in levels over two periods, ΔDt(Q=2), is:  

 𝜎∆𝐷𝑡(𝑄=2)
2 = 𝜎∆𝐷𝑡

2 + 𝜎∆𝐷𝑡−1
2 + 2𝐶𝑂𝑉(∆𝐷𝑡, ∆𝐷𝑡−1) (3.12) 
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where COV stands for the covariance between the differenced pavement degradation in year t and 

one lagged period, t-1.   Should the variance be homoscedastic, then Equation 3.12 simplifies to:  

 𝜎∆𝐷𝑡(𝑄=2)
2 = 2𝜎∆𝐷𝑡

2 (1 + 𝜌∆𝐷𝑡,∆𝐷𝑡−1)            (3.13) 

where 𝜌∆𝐷𝑡,∆𝐷𝑡−1 is the correlation coefficient between ΔDt and ΔDt-1 with the drift term removed.  

The correlation coefficient from Equation 3.13 offers tremendous insight regarding the appropriate 

specification for pavement deterioration.  For example, a correlation coefficient estimate close to 

zero would suggest that deterioration follows a random walk with drift, the null hypothesis of this 

research.  Conversely, a correlation coefficient less than zero provides evidence that pavement 

degradation is actually trend-stationary over time, as stochastic shocks slowly dissipate as the process 

reverts to its long-run levels trend.  To test the null hypothesis that pavement degradation follows a 

random walk with drift, a two-sided p-value can be approximated per Fisher’s z-transformation.  The 

accuracy of such an approximation, as well as the simplification made to Equation 3.13, requires 

that the variance is both Gaussian distributed and consistent for ΔDt and ΔDt-1.  A simple F-test for 

the assumption of constant variance across ΔDt and ΔDt-1 is conducted as a part of this research, and 

the residuals are inspected to ensure that they exhibit normality. 

Data analysis and results 

Model Specification 

Table 3-1 presents parameter estimates from the original non-linear regression.  Directionally, one 

would expect a positive exponent term for β1 and a negative estimate for β2. In other words, an 

increase in traffic should be associated with a larger drift term, while an increase in the structural 

capacity of a pavement should lead to a lower rate of deterioration.  For the most part, parameter 

estimates correspond well to initial expectations except for β1 for the JPCP models.  Having said 

that, this parameter estimate has a t-statistic much less than two, making it difficult to accept the 

null hypothesis that the estimate is different from zero. 

As a result, the JPCP model is reformulated as: 
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∆𝐷𝑡,𝑖 = 𝛼𝐴𝑔𝑒𝑡−1,𝑖

𝐴𝐴𝐷𝑇𝑇𝑡−1,𝑖
𝛽1 − 1

𝛽1
𝑆𝑁𝑡−1,𝑖

𝛽2 + 𝜀𝑡,𝑖          (3.14a) 

Table 3-1. Parameter estimates for the random walk with drift specification. 

Estimate/Statistic HMA Composite JPCP 

α 1.59*10-3 0.0100 4.97 

β1 0.293 0.525 -0.19 

β2 -0.86 -1.03 -1.10 

n 336 241 530 

R2 0.12 0.20 0.06 

Specified model: ∆𝐷𝑡,𝑖 = 𝛼𝐴𝑔𝑒𝑡−1,𝑖𝐴𝐴𝐷𝑇𝑇𝑡−1,𝑖
𝛽1 𝑆𝑁𝑡−1,𝑖

𝛽2 + 𝜀𝑡,𝑖 

where β2 is equal to its estimate in Table 3-1.  Specifying the deterioration model as such has practical 

advantages given that: 

 
lim
z→0

𝑥𝑧 − 1
𝑧

= log 𝑥  (3.15) 

The parameter estimate for β1 for JPCP segments still approaches zero, and so that covariates is 

logarithmically transformed in the parameter estimation.  Table 3-2 synthesizes the final model 

specification for each of the three types of pavements classified within the LTPP dataset.  All 

parameter estimates are moved towards a more traditional type of data transformation, as although 

the majority of the t-statistics reject the null hypothesis of coefficient estimates equaling zero, 

standard errors are large enough that such a decision is not unreasonable.  T-statistics for α, as is 

noted parenthetically in Table 3-2, are significant and positive for all materials, as expected.  It is 

also important to mention that the sample variance, s2, is quite high across all three estimates.  This 

result, in part, reflects not only the unexplained variation in the pavement degradation process, but 

also the uncertainty underlying the measurement of the physical condition of a roadway at a given 

point in time.  Specifically, in many instances the measured IRI of a pavement segment in year t is 

higher than that same facility in year t+1.  This outcome reinforces the findings of Madanat (1993) 

that the measurement of the condition for an infrastructure facility is not error-free. 
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Table 3-2. Final specification of pavement IRI degradation models.  T-statistics for drift terms are noted in 
parenthesis. 

Estimate/Statistic Asphalt Composite JPCP 

Α .00429 (7.59) 1.83*10-5 (7.56) 0.355 (6.63) 

β2 0.33 0.5 LN(AADTT) 

β3 -1 -1 -1 

s2 0.34 0.31 0.34 

Specified model: ∆𝐷𝑡,𝑖 = 𝛼𝐴𝑔𝑒𝑡−1,𝑖𝐴𝐴𝐷𝑇𝑇𝑡−1,𝑖
𝛽1 𝑆𝑁𝑡−1,𝑖

𝛽2 + 𝜀𝑡,𝑖 

Testing of Model Specification 

Table 3-3 presents estimates of the correlation coefficient between ΔDt and ΔDt-1 (with the drift terms 

removed) to test the null hypothesis (H0) that pavement deterioration follows a random walk with 

drift (e.g., 𝜌∆𝐷𝑡,∆𝐷𝑡−1= 0).  Residuals of the regression model conform well to normality, while an F-

test on the variances for ΔDt and ΔDt-1 is unable to reject the null hypothesis of constant variance 

between the two samples.  The tests used in this analysis are biased towards rejection of the null 

hypothesis, as a negative correlation coefficient might arise due to measurement errors between year 

t and t+1.  The HMA sections do not exhibit any noticeable mean-reversion, with a test statistics that 

cannot reject the null hypothesis of a random walk with drift at the 1%, 5%, or 10% levels.  On the 

other hand, the composite and JPCP sections exhibit weak mean-reversion, though not strong 

enough to reject the null hypothesis of a random walk with drift These results, as a result, provide 

reasonable evidence that pavement degradation should be parameterized as a difference-stationary 

stochastic process over time, contrary to the popular trend-stationary models that exist amongst the 

academic literature. 

Table 3-3. Test statistics for the null hypothesis that pavement degradation follows a random walk with drift. 

Estimate/Statistic Asphalt Composite JPCP 

𝜌∆𝐷𝑡,∆𝐷𝑡−1 .028 -0.094 -0.117 

P-value H0: 𝜌∆𝐷𝑡,∆𝐷𝑡−1= 0 0.98 0.41 0.14 

Sample size (n) 89 79 162 
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Conclusions    

Pavement degradation models are an important component of pavement management systems, both 

at the network and project-level.  Interestingly, the existing tools developed for planners make 

different and, in many ways, contrasting assumptions regarding the evolution of deterioration over 

time.  In particular, there is ambiguity as to whether pavement deterioration tends to exhibit trend-

stationary or difference-stationary characteristics over time.  A ramification of specifying the 

pavement degradation process incorrectly is that it leads to incorrect estimates of future expected 

deterioration and associated unexplained variation. 

This chapter develops a statistical approach to determine the appropriate specification of pavement 

degradation over time.  The analysis focuses upon characterizing the long-run evolution of pavement 

roughness only for LTPP sections collected by FHWA.  Results from the study indicate that 

roughness has historically followed a random walk with drift, implying that stochastic shocks have a 

permanent effect on future deterioration levels.  This result suggests that the MDP approach that 

previous authors have utilized is reasonable except that it does not account for the heterogeneity 

across segments.  In order to account for this heterogeneity, a series of regression models have been 

estimated where the drift terms are a function of a non-linear interaction between pavement age, 

thickness, and traffic volume.  Outcomes of the analysis demonstrate that such an approach helps 

explain some, but not all, of the variation across pavement segments.  Furthermore, the models 

require low computational resources and make use of data generally available in pavement 

management databases, both of which are important considerations to integrate deterioration 

models within network-level allocation tools. 

Several opportunities exist to extend the findings of this chapter.  Future research, for example, 

should evaluate whether the findings presented hold true for a larger range of distress mechanisms.  

Moreover, given the pervasive measurement error for LTPP sections, future work should integrate 

methods that can decompose uncertainty between condition assessment and actual deterioration.  

Lastly, future studies should quantify the repercussions of a misspecification of the pavement 

degradation process at a network-level.  
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CHAPTER 4: INITIAL-COST OF MAINTENANCE 
ACTIONS 

Background of existing initial-cost estimation methods 

The prevalence of inaccurate and oftentimes biased early-cost estimates is a well-documented 

phenomenon within the construction community (Eliasson and Fosgerau 2013).  Flyvberg, Holm et 

al. (2002), perhaps the most widely cited paper on this topic, note that roadway projects cost 20% 

more on average than initial estimates.  Consequently, Flyvberg, Holm et al. (2002) postulate that 

the bias towards cost overruns in transportation projects is a result of strategic misrepresentation by 

planners to make projects seem more attractive than they are in reality.  An alternative hypothesis 

that could potentially explain the tendency towards cost overruns in construction, however, is the 

poor fidelity of the existing tools used by planners.  As an example, Lowe, Emsley et al. (2006) 

developed a series of regression models that, as the authors noted, systematically underestimated 

construction costs for large-scale building projects.  Furthermore, the aforementioned study by 

Flyvberg, Holm et al. (2002) indicated that the coefficient of variation (COV) of the difference 

between estimated and actual costs was greater than one.  These papers are just a couple of examples 

that shed light on the fact that the existing tools and methods used by practitioners are both 

imprecise and inaccurate.  

Table 4-1 presents a larger set of cost estimation research for buildings and bridges, the two most 

common forms of infrastructure that researchers have studied in-depth.   Existing research uses both 

cross-sectional and panel data to develop parametric and non-parametric models to predict project-

level costs.  Predictor variables across the multi-variate studies listed include general site conditions, 

location, and the geometric layout of a structure.  Parametric approaches make use of multiple linear 

regression combined with dimensionality reduction techniques such as stepwise (both forward and 

backward) regression, factor analysis, and principal component analysis to elicit the important 

parameters that influence construction costs.   

Alternatively, neural networks are a popular non-parametric approach for cost estimation that learns 

through iteration the response of a system given a set of external inputs (Garza and Rouhana 1995; 
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Hegazy and Ayed 1998). Although researchers have demonstrated the accuracy of neural networks 

for cost estimation, such models have inherent drawbacks that parametric methods can address 

(Emsley, Lowe et al. 2002).  In particular, the ability of the parametric approach to (a) be transparent 

(b) explicitly account for uncertainty and (c) integrate with analytical tools such as probabilistic 

LCCA provides practical and theoretical advantages over non-parametric methods such as neural 

networks.  Of course, the main advantage of an approach like a neural network is its ability to 

account for non-intuitive and non-linear relationships between response and predictor variables.  As 

a result, an important component for measuring the fidelity of regression models is to ensure that 

the estimates are unbiased and the residuals are homoscedastic, two basic assumptions for ordinary 

least squares (OLS) regression.  Doing so guarantees that parametric estimates that would enter a 

model like LCCA properly reflect the data at hand and the construction activity it represents. 

Table 4-1. Statistical methods to estimate construction costs for buildings and bridges.  

Study Approach Performance Metrics 

McCaffer, McCaffrey et al. (1984) 
Linear regression (OLS and alternative 
approaches) 

COV of ratio of predicted over actual  

Emsley, Lowe et al. (2002) Neural networks and linear regression Coefficient of determination (R2) and 
mean absolute percent error (MAPE)  

Trost and Oberlender (2003) 
Factor analysis and multiple linear 
regression (MLR) 

Not applicable 

Chan and Park (2005) Principal component analysis and MLR R2, MAPE, tests for heteroscedasticity and 
serial correlation of the residuals  

Lowe, Emsley et al. (2006) Stepwise MLR R2, MAPE, qualitatively assess bias and 
heteroscedasticity of the residuals  

Ji, Park et al. (2010) Stepwise MLR Adjusted R2, MAPE 

Kim and Hong (2012) Case-based reasoning and MLR MAPE and standard deviation of MAPE 

Of the studies listed in Table 4-1, the majority of them measure model fidelity via conventional 

metrics such as the sample coefficient of determination (R2) and the mean absolute percent error 

(MAPE) of the model (Trost and Oberlender 2003; Ji, Park et al. 2010; Kim and Hong 2012).  Chan 

and Park (2005), one exception to this trend, test for the presence of heteroscedasticity and serial 

correlation in their regression models for building construction in Singapore.  Based upon those 

tests, both the null hypotheses of uncorrelated residuals and homoscedasticity are rejected based 

upon Engle’s test for autoregressive conditional heteroscedasticity (ARCH) and White’s test for 
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heteroscedasticity without interaction terms.  Notably, however, these test results were not viewed 

as sufficient reasons to abandon the OLS model of Chan and Park (2005).   Lowe, Emsley et al. 

(2006) qualitatively evaluate whether or not the residuals of a building cost regression model are 

homoscedastic or biased for untransformed and logarithmically transformed data.  The authors 

mention that the models are structurally biased such that they “overestimate the cost of cheaper 

projects and underestimate the cost of more expensive projects.”  Furthermore, the residuals are not 

always homoscedastic over the covariates, potentially leading to mischaracterized parametric 

estimates of expected construction costs and uncertainty.  As the authors note, this may be due to 

“poor representation” of nonlinear relationships between the dependent and independent variables 

(Lowe, Emsley et al. 2006).   

A smaller body of literature has focused on early cost estimation methods for pavements.  Since 

traditional cost estimation tools for roadways tend to follow a bottom-up approach, where the cost 

of each individual item is aggregated to estimate total costs, these papers have focused more so on 

cost as it relates to individual pay items rather than the entire cost of a roadway (Chua and Li 2000; 

Hiyassat 2001; Williams 2003; Carr 2005).  Sanders, Maxwell et al. (1992) is the first major work to 

have evaluated potential methods to characterize the variation that underlies bid unit-price data.  

The authors developed a series of linear regression models for nine different bid items in the state 

of Alabama as a function of quantity.  An increase in the size of a project tended to decrease the 

winning bid unit-price (e.g., economies of scale) for all nine bid prices.  The authors measured the 

fidelity of the estimated regression models using the sample R2.  Shrestha, Pradhananga et al. (2014) 

augmented the preceding research by conducting a linear regression analysis of winning bid unit-

price versus quantity for twelve different bid items in the state of Nevada, but this time considering 

alternative traditional data transformations to achieve linearity.  The data transformation that led to 

the highest sample R2 was selected for each bid item.  As expected, all bid items evaluated showed a 

statistically significant and negative correlation between bid unit-price and quantity.  Although the 

aforementioned transformations improved the overall fit of the models, the authors did not report 

information on how they impacted bias and/or homoscedasticity. 

The development of accurate and unbiased early cost estimates is an important component of 

comparing alternative transportation and infrastructure investments.  In its current form, however, 
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the current models are susceptible to both systematic bias and heteroscedasticity, both of which lead 

to incorrect assumptions about expected construction cost and uncertainty.  As a result, this chapter 

presents a new approach for initial-cost estimation that more frequently leads to unbiased estimates 

and homoscedasticity across the covariates. The approach merges an optimization solver for data 

transformations and a dimensionality reduction technique for variable selection amongst multiple 

covariates.  The approach can also scale to high-dimensional problems with many input factors to 

explain a larger portion of the variation than the bivariate models of Sanders, Maxwell et al. (1992) 

and Shrestha, Pradhananga et al. (2014).   

Methodological approach 

This chapter considers three possible parametric approaches to model the unit-price of bid items 

used in roadway construction.  The baseline approach follows that of Shrestha, Pradhananga et al. 

(2014), where bid unit-prices (Pi) are regressed against bid quantity (Xi,q) with an ordinary least 

squares (OLS) estimator.  The data is transformed in one of three ways based upon the coefficient 

of determination (R2).  The second approach is similar to the baseline except that the analysis 

searches for an optimal data transformation (denoted as λ).  The third and final approach 

incorporates the optimal data transformation solution while also including variation across districts 

within a state (Xi,d) and the number of bidders for a project (Xi,b).  The decision to incorporate 

number of bidders is due to the results of Shrestha and Pradhananga (2010), which evaluated the 

deviation between bid cost and early cost estimates as a function of the number of bids for a project.  

The authors found a strong negative correlation between the two, meaning that for low bid projects, 

total costs were significantly higher than expected.  This same finding has been corroborated in the 

buildings community by the research of Carr (2005).  Furthermore, since pay items typically convolve 

material and non-material costs, such as transportation of materials from the plant to the site, costs 

are likely to differ within a given state.  Although this dissertation only considers these explanatory 

factors, the methodology to follow can easily accommodate a larger range of factors.  Table 4-2 

synthesizes the three modeling approaches discussed. 

An important contribution of this dissertation is the evaluation as to whether or not the three 

proposed approaches adequately meet the assumptions of unbiased and homoscedastic residuals 
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that underlie OLS regression.  As such, the goodness-of-fit of the models described is not just 

measured using the coefficient of determination, but also the Breusch-Pagan test for 

heteroscedasticity and an F-test on the residuals that evaluates the presence of bias.  Additionally, 

the second approach discussed requires a method to select an optimal data transformation, while 

the third approach necessitates a variable selection/dimensionality reduction technique.  For this 

research, least angle regression (LAR), which is related to the least absolute shrinkage and selection 

operator (LASSO) algorithm, is conducted for dimensionality reduction.  A Box-Cox transformation 

based off of a maximum likelihood (ML) estimator is used to find the optimal data transformation. 

Table 4-2. Summary table of the structural form for the three approaches to model variation in unit-price data.  
The structural form selected in Approach 1 is determined by the transformation that leads to the highest R2. 

Approach Model Type Functional Form 

1 

Log 𝑃𝑖 = 𝛽0 + 𝛽𝑞𝐿𝑁(𝑋𝑖,𝑞) + 𝑢𝑖 

Reciprocal 
1
𝑃𝑖

= 𝛽0 + 𝛽𝑞𝑋𝑖,𝑞 + 𝑢𝑖 

Power 𝐿𝑁(𝑃𝑖) = 𝛽0 + 𝛽𝑞𝐿𝑁(𝑋𝑖,𝑞) + 𝑢𝑖 

2 Box-Cox transformation (λ) 𝑃𝑖
(𝜆1) = 𝛽0 + 𝛽𝑞𝑋𝑖,𝑞

(𝜆2) + 𝑢𝑖 

3 
Box-Cox transformation (λ), 

district variation (d) , and number 
of bidders (b)  

𝑃𝑖
(𝜆1) = 𝛽0 + 𝛽𝑞𝑋𝑖,𝑞

(𝜆2) + ∑ 𝛽𝑑𝑙𝑋𝑖,𝑑𝑙

𝐿

𝑙=1

+ 𝛽𝑏𝑋𝑖,𝑏 + 𝑢𝑖 

Notes: 
𝑃𝑖  – Bid unit-price for ith sample 
𝑋𝑖,𝑞 – Bid quantity 
𝑋𝑖,𝑑𝑙 – Dummy variable for lth district within a state 
𝑋𝑖,𝑞 – Number of bidders for a project 
𝜆1, 𝜆2 – Optimal data transformations for bid unit-price and quantity 

A test for heteroscedasticity 

Perhaps the most simple (yet highly effective) strategy to test for heteroscedasticity is the Breusch-

Pagan test, which evaluates the null hypothesis that the residuals of an OLS regression meet the 

assumption of homoscedasticity (Breusch and Pagan 1979).  In a typical multiple linear regression 

of the form: 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖,1 + ⋯𝛽𝑝𝑋𝑖,𝑝 + 𝑢𝑖             (4.1) 

where for each individual sample, i, the predictor variable, Yi, is a function of p covariates, Xi,p, and 

their associated effects, βp, one would expect that the variance of the residuals, ui, is constant across 

all covariates.  Therefore, an auxiliary regression of the squared residuals as a function of those same 
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covariates (with effects now denoted as γp) can be run to test whether or not the residuals meet the 

underlying assumption of homoscedasticity: 

 �̂�𝑖
2 = 𝛾0 + 𝛾1𝑋𝑖,1 + ⋯𝛾𝑝𝑋𝑖,𝑝 + 𝑣𝑖             (4.2) 

The null hypothesis that the parameter estimates for the covariates are equal to zero (e.g., 

homoscedasticity) can subsequently be tested by use of a Lagrangian multiplier (LM).  Furthermore, 

a t-test on the covariates for the above auxiliary regression can provide insight as to which covariate 

should be transformed such that the assumption of homoscedasticity is met.   Given that bid 

quantity, Xi,q, is the only covariate that is continuous across all three approaches, it is likely that if 

the null hypothesis of the Breusch-Pagan test is rejected, then bid quantity will have a high t-statistic 

for the above auxiliary regression.  With that said, such t-statistics are very valuable should future 

research consider a larger range of factors.  

The concept of the Breusch-Pagan test is extended in this chapter to test for bias in the residuals 

over bid quantity per: 

 �̂�𝑖 = 𝛿0 + 𝛿1𝑋𝑖,𝑞+𝛿2𝑋𝑖,𝑞
2 + 𝜀𝑖              (4.3) 

Although bias in the residuals could take other forms, this specific type of bias is particularly 

pervasive in regression models.  The F-statistic for this regression is computed to evaluate the null 

hypothesis that the residuals are non-biased (e.g., δ1 = δ2 = 0) as a function of bid quantity. 

Data transformation and dimensionality reduction 

Logarithmic and reciprocal models are examples of simple data transformation techniques 

frequently used by statisticians to transform predictor variables and covariates such that 

homoscedastic and unbiased estimates are met in regression.  A more broad and flexible class of 

models exist that are known as Box-Cox transformations, which are of the following form (Box and 

Cox 1964): 

 
𝑧(𝜆) =

𝑧𝜆 − 1
𝜆

 
               

(4.4) 

 𝑌𝑖
(𝜆1) = 𝛽0 + 𝛽𝑛𝑋𝑖,𝑛

(𝜆2)              (4.5) 
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In Equation 4.5, λ1 and λ2 represent the data transformation of the dependent variable, Y, and nth 

covariate, X, for each sample, i, per the transformation for z shown in Equation 4.4.  Table 4-3 

presents the values of λ that correspond with the more traditional transformations used in statistical 

and econometric analyses.  Given that the residuals of OLS regression are assumed to be Gaussian 

distributed, a fairly simple ML estimator can be constructed to find the ‘optimal’ values of λ1 and λ2.  

The determination as to which covariate(s) need to be transformed can be inferred from the t-test in 

the previously mentioned auxiliary regression of the residuals.  

Table 4-3. Estimates of λ from Box-Cox MLE and associated ‘traditional’ transformation.  

λ Value Corresponding Transformation 

0.75 to 1.50 z1 

0.42 to 0.75 z0.5 

0.17 to 0.42 z0.33 

-0.17 to 0.17 Ln (z) 

-0.42 to -0.17 z-0.33 

-0.75 to -0.42 z-0.5 

-0.75 to -1.50 z-1 

As for dimensionality reduction, LAR is a recently developed method that has grown in popularly 

since it can be used as an efficient solution to the LASSO algorithm and address some of the 

concerns with forward stepwise regression (Efron, Hastie et al. 2004).  Similar to forward stepwise 

regression, LAR functions as any greedy algorithm where a locally optimal choice is made without 

looking ahead to future steps.  Initially, all parameter estimates are set to zero while values for the 

covariates are normalized.  Subsequently, the covariate most correlated with the residuals is selected, 

and the parameter estimate is moved from zero towards its least-square coefficient until a second 

variable has just as much correlation with the residuals as the first covariate.  This process of moving 

covariates until another variable is just as correlated with the residuals continues until the active set 

of parameters to select from is exhausted.  For each new covariate added to the model, Mallow’s Cp 

(one best-fit measure) is estimated; the step that minimizes its value is treated as the cut-off point for 

the number of variables to select in model estimation.  The benefit of the LAR approach compared 

to other greedy approaches (such as stepwise regression) is that it does not add a predictor fully to 
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the model at once.  Rather, it does so gradually, causing it to be more robust than other greedy 

approaches. 

Results of case study analyses 

 This dissertation evaluates the fidelity of the initial-cost approach proposed through bid data 

for asphalt and concrete pay items collected by Oman Systems, Inc. for the states of Missouri, 

Colorado, Indiana, Louisiana, and Kentucky between late 2011 and early 2014 (Oman Systems Inc., 

2016).  The selection of bid data rather than actual cost information is due to the general availability 

of the former in public databases.  Approach 3, the multi-variate instance, incorporates both district 

variation within a given state and the implication of number of bidders (one metric for competition 

in a project) on bid unit-prices.  To address district variation, bid data is divided (through dummy 

variables as noted in Table 4-2) into regions according to the current districts established for each 

respective DOT.  Table 4-4 summarizes the bid datasets and number of districts within each state 

for this analysis. 

Table 4-4. Summary table of datasets for analysis (Oman Systems Inc., 2016). 

State Number of Districts Bid Datasets 

Missouri 7 
Concrete Pavements 
HMA Mixture BP-1 

HMA PG64-22 

Indiana 6 

PCCP 
HMA Type A Surface 
HMA Type B Surface 
HMA Type A Inter. 

Colorado 5 
Concrete Pavement 

HMA PG64-22 

Louisiana 9 
PCCP Pavement 

HMA Superpave Level 1 

Kentucky 12 

JPC Pavement 
HMA CL2 0.38D PG64-22 
HMA CL3 0.38D PG64-22 
HMA CL2 1.00D PG62-22 

To evaluate the performance of the traditional method (Approach 1) for cost estimation, the 

Breusch-Pagan heteroscedasticity test and the modified F-test for biased residuals are estimated for 

the baseline model.  For all 15 bid datasets, a power model (where the independent and dependent 
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variables are logarithmically transformed) is the best fitting model of the three choices available per 

the sample coefficient of determination.  Table 4-5 presents bid quantity coefficient estimates and t-

statistics, Breusch-Pagan test results (both LM and t-statistic for bid quantity) and biased F-test values 

for the baseline model as well as optimal Box-Cox transformations per the ML estimator. 

Table 4-5. Summary statistics for Approach 1 (baseline).  Values denoted with a ‘*’ reject the null hypothesis of 
homoscedastic (Breusch-Pagan LM test) or unbiased (residual F-test) residuals. Optimal Box-Cox transformations 

per an ML estimator are listed below. 

State Dataset 

Coefficient Estimate 
Breusch-Pagan  

Test LM 
Biased residual  

F-statistic 

Box-Cox  

Transformation 

Estimate t-statistic 
Price 

λopt 

Quantity 

λopt 

Missouri 
Concrete Pavements -0.14 -17.0 25.6* 3.1* -0.96 -.02 
HMA Mixture BP-1 -0.19 -24.2 172.1* 23.9* -1.04 -0.04 
HMA PG64-22 -0.05 -7.0 35.8* 8.6* -0.92 -0.47 

Indiana 

PCCP -0.17 -9.1 15.2* 0.3 -0.38 -.07 
HMA Type A Surface -0.17 -17.7 126.3* 10.2* -0.43 -0.11 
HMA Type B Surface -0.18 -18.3 230.5* 9.1* -0.46 -0.09 
HMA Type A Inter. -0.19 -18.3 42.3* 6.1* -0.37 -0.06 

Colorado 
Concrete Pavement -0.14 -14.1 16.1* 1.1 -0.58 0.19 
HMA PG64-22 -0.14 -9.6 8.2* 4.4* -0.51 -0.17 

Louisiana 
PCCP Pavement -0.13 -11.9 29.7* 0.7 -0.75 0.20 
HMA Superpave Level 1 -0.18 -40.2 19.2* 36.9* -0.35 -0.09 

Kentucky 

JPC Pavement -0.12 -12.0 17.1* 1.1 0.22 0.11 
HMA CL2 0.38D PG64-22 -0.14 -42.8 706.5* 261.0* -0.39 -0.33 
HMA CL3 0.38D PG64-22 -0.12 -10.5 73.7* 49.6* -0.46 -0.53 
HMA CL2 1.00D PG62-22 -0.13 -19.1 115.3* 19.0* -0.72 -0.11 

Note:  
Approach 1 (Power Model): 𝐿𝑁(𝑃𝑖) = 𝛽0 + 𝛽𝑞𝐿𝑁(𝑋𝑖,𝑞) + 𝑢𝑖  

As can be noted, across all 15 bid items there is a strong correlation between bid unit-price and 

quantity.  On the other hand, the null hypothesis of homoscedasticity is rejected for all datasets, 

while the null hypothesis of unbiased residuals is rejected in 11 instances.  Furthermore, t-statistics 

for bid quantity in the auxiliary regression of the squared residuals are significant and negative except 

for one instance.  This result suggests two important aspects regarding the datasets at hand.  First, 

the variance of the residuals decreases across bid quantity and, therefore, the OLS estimation 

overestimates the variance for large-scale projects while underestimates it for smaller construction 

activities.  Second, the residuals are structurally biased such that the regression models underestimate 

prices for large projects, similar to what Lowe, Emsley et al. (2006) noted.  These findings suggest 

that both the bias and heteroscedasticity in the baseline approach could potentially lead to a poor 
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characterization of expected unit-prices and variance for roadway bid items, something that the Box-

Cox transformations as presented at the end of Table 4-5 may address.  

Table 4-6 presents results of the dimensionality reduction analysis via the LAR algorithm. Both bid 

unit-price and quantity are transformed in this section by rounding the optimal Box-Cox 

transformations listed in Table 4-5 to their closest traditional transformation per Table 4-3.  In 

addition to economies-of-scale, as noted in Table 4-2, district variation is important and significant, 

while the number of bidders for a given project is only significant at the 5% level for half of the 

datasets. 

Table 4-6. Summary of model for Approach 3 (Box-Cox transformations with district variation and number of 
bidders covariates).  The positive and negative signs indicate the existence and direction of a statistically significant 

relationship.   

State Dataset Price λ Quantity λ 
Quantity 

Estimate 
Bids 

Estimate 

Number of 
remaining dummy 

districts  

Missouri 
Concrete Pavements -1 LN - - 4 
HMA Mixture BP-1 -1 LN - + 2 
HMA PG64-22 -1 -0.5 - - 2 

Indiana 

PCCP -0.33 LN - - 3 
HMA Type A Surface -0.5 LN -  5 
HMA Type B Surface -0.5 LN -  1 
HMA Type A Inter. -0.33 LN -  3 

Colorado Concrete Pavement -0.5 0.33 - - 3 
HMA PG64-22 -0.5 LN - - 3 

Louisiana PCCP Pavement -1 0.33 - - 4 
HMA Superpave Level 1 -0.33 LN -  5 

Kentucky 

JPC Pavement 0.33 LN -  4 
HMA CL2 0.38D PG64-22 -0.33 -0.33 - - 9 
HMA CL3 0.38D PG64-22 -0.5 -0.5 - - 7 
HMA CL2 1.00D PG62-22 -0.5 LN -  4 

Note: 

Approach 3: 𝑃𝑖
(𝜆1) = 𝛽0 + 𝛽𝑞𝑋𝑖,𝑞

(𝜆2) + ∑ 𝛽𝑑𝑙𝑋𝑖,𝑑𝑙
𝐿
𝑙=1 + 𝛽𝑏𝑋𝑖,𝑏 + 𝑢𝑖 

Table 4-7 compares the Breusch-Pagan LM critical values, biased F-statistic estimates, and  coefficient 

of determination (R2) of the baseline model (Approach 1), the Box-Cox transformation model 

(approach 2), and the multi-variate Box-Cox model (Approach 3).  Although some of the models still 

exhibit biased residuals (6 of 15) and heteroscedasticity (8 of 15) in Approach 3, it still significantly 

improves both aspects relative to the current benchmark.  Furthermore, the improvement of the 

coefficient of determination (R2) between Approach 2 and Approach 3 signifies the ability of 

additional covariates to reduce unexplained variation in the data, with the Kentucky HMA CL3 
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0.38D PG64-22 pay item the most extreme example.  These findings are particularly promising and 

provide strong evidence that the modeling approach proposed in this chapter can aid the 

development of initial-cost estimates that better reflect the structural form of the actual data. 

Table 4-7.  Biased F-test, Breusch Pagan heteroscedasticity test, and R2 values for Approach 1, 2, and 3.  
Values denoted with a ‘*’ reject the null hypothesis of homoscedastic (Breusch-Pagan LM test) or unbiased (residual 

F-test) residuals. 

State Dataset 
Biased F-stat Breusch-Pagan LM R2 

1 2 3 1 2 3 1 2 3 

Missouri 
Concrete Pavements 3.1* 0.1 0.0 25.6* 0.2 0.8 0.66 0.68 0.74 
HMA Mixture BP-1 23.9* 1.6 1.8 172* 30.2* 29.0* 0.64 0.69 0.72 
HMA PG64-22 8.6* 0.5 4.4* 35.8* 7.3* 6.8* 0.12 0.14 0.18 

Indiana 

PCCP 0.3 0.0 0.4 15.2* 2.6 0.2 0.26 0.26 0.34 
HMA Type A Surface 10.2* 0.5 1.4 126* 7.4* 5.9* 0.42 0.42 0.48 
HMA Type B Surface 9.1* 1.3 3.5* 231* 69.6* 25.9* 0.45 0.44 0.47 
HMA Type A Inter. 6.1* 0.8 0.5 42.3* 0.5 0.2 0.50 0.49 0.54 

Colorado 
Concrete Pavement 1.1 3.5* 4.4* 16.1* 4.9* 1.0 0.50 0.52 0.59 
HMA PG64-22 4.4* 0.7 0.0 8.2* 1.3 2.1 0.35 0.34 0.56 

Louisiana 
PCCP Pavement 0.7 0.4 0.1 29.7* 0.2 0.9 0.49 0.56 0.64 
HMA Superpave Level 1 36.9* 14.6* 23.0* 19.2* 0.8 2.1 0.74 0.74 0.78 

Kentucky 

JPC Pavement 1.1 0.2 0.5 17.1* 42.8* 4.3* 0.37 0.37 0.44 
HMA CL2 0.38D PG64-22 261* 0.9 5.2* 707* 101* 145* 0.47 0.52 0.69 
HMA CL3 0.38D PG64-22 49.6* 0.3 0.4 73.7* 7.3* 16.0* 0.22 0.27 0.63 
HMA CL2 1.00D PG62-22 19.0* 7.1* 14.8* 115* 27.9* 26.8* 0.50 0.52 0.58 

Note:  
Approach 1 (Power Model): 𝐿𝑁(𝑃𝑖) = 𝛽0 + 𝛽𝑞𝐿𝑁(𝑋𝑖,𝑞) + 𝑢𝑖 

Approach 2: 𝑃𝑖
(𝜆1) = 𝛽0 + 𝛽𝑛𝑋𝑖,𝑛

(𝜆2) + 𝑢𝑖 

Approach 3: 𝑃𝑖
(𝜆1) = 𝛽0 + 𝛽𝑞𝑋𝑖,𝑞

(𝜆2) + ∑ 𝛽𝑑𝑙𝑋𝑖,𝑑𝑙
𝐿
𝑙=1 + 𝛽𝑏𝑋𝑖,𝑏 + 𝑢𝑖 

To illustrate the potential impact of the proposed method on early-cost estimates, the unit-price of 

each bid item is estimated using the three approaches discussed for 15,000 cubic yards of concrete 

and 15,000 tons of asphalt, representative of the amount of material that goes into large construction 

projects.  The number of bidders that are input for each regression in Approach 3 is the sample 

average for that individual dataset.  Figure 4-1 and Figure 4-2 present box-and-whisker plots of the 

estimated bid unit prices of concrete and asphalt and the associated uncertainty for four of the 

datasets: Missouri and Louisiana concrete pavements and Missouri BP-1 and Indiana Type B Surface 

asphalt mixtures.  As can be seen, the first three bid items are excellent examples of how optimized 

data transformations and the expansion of the number of explanatory variables both shifts the 

distribution mean/median and, for large projects, reduces the expected variance.  The Indiana Type 

B Surface asphalt mixture is one example where the proposed approach has a smaller impact on the 

estimated cost.  This finding does not render the preceding results useless, but rather demonstrates 
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the value of the models and approaches discussed are largely a function of the structure of the data 

at hand. 

 

 

 

Note:  
Approach 1 (Power Model): 𝐿𝑁(𝑃𝑖) = 𝛽0 + 𝛽𝑞𝐿𝑁(𝑋𝑖,𝑞) + 𝑢𝑖 

Approach 2: 𝑃𝑖
(𝜆1) = 𝛽0 + 𝛽𝑛𝑋𝑖,𝑛

(𝜆2) + 𝑢𝑖 

Approach 3: 𝑃𝑖
(𝜆1) = 𝛽0 + 𝛽𝑞𝑋𝑖,𝑞

(𝜆2) + ∑ 𝛽𝑑𝑙𝑋𝑖,𝑑𝑙
𝐿
𝑙=1 + 𝛽𝑏𝑋𝑖,𝑏 + 𝑢𝑖 

Figure 4-1. Box-whisker plot of bid unit-price expectation (represented by the dots) and its uncertainty for the three 
approaches for 15,000 cubic yards of concrete.  Whiskers represent the 5th and 95th percentiles of the theoretical 

distribution. 

Another important point is that due to the selected data transformations, the distribution of bid 

unit-prices is implicitly asymmetric, which leads to expected unit-prices (blue dots) that are greater 

than the medians (central line) for all cases analyzed, as shown in Figure 4-1 and Figure 4-2.  The 

simplest example to demonstrate this effect is to consider the model form associated with Approach 

1, which assumes that natural logarithmic unit-prices are Gaussian distributed.  Based upon the 

properties of a log-normal distribution, expected bid unit-prices, P, given a quantity, Q, in Approach 

1 would be: 
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𝐸[𝑃|𝑄] = 𝑒𝛽0+𝛽𝑞𝐿𝑁(𝑄)+𝑠2

2              (4.6) 

where s2 is the unbiased estimator of the variance, σ2.  This discussion suggests that practitioners are 

not only prone to underestimate expected construction costs because they fit their data to a 

structurally biased regression model, but also because they do not account for the error term when 

transforming data back to its original form.  Changes in practice that address these possible pitfalls 

could potentially reduce the bias in construction cost estimates as discussed by Flyvberg et al. (2002). 

 

 

 

Note:  
Approach 1 (Power Model): 𝐿𝑁(𝑃𝑖) = 𝛽0 + 𝛽𝑞𝐿𝑁(𝑋𝑖,𝑞) + 𝑢𝑖 

Approach 2: 𝑃𝑖
(𝜆1) = 𝛽0 + 𝛽𝑛𝑋𝑖,𝑛

(𝜆2) + 𝑢𝑖 

Approach 3: 𝑃𝑖
(𝜆1) = 𝛽0 + 𝛽𝑞𝑋𝑖,𝑞

(𝜆2) + ∑ 𝛽𝑑𝑙𝑋𝑖,𝑑𝑙
𝐿
𝑙=1 + 𝛽𝑏𝑋𝑖,𝑏 + 𝑢𝑖 

Figure 4-2. Box-whisker plot of bid unit-price expectation (represented by the dots) and its uncertainty for the three 
approaches for 15,000 tons of asphalt.  Whiskers represent the 5th and 95th percentiles of the theoretical 

distribution. 
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Conclusions  

Representative parametric estimates of maintenance action costs are important components that 

affect the allocation decisions of pavement management systems.  Unfortunately, however, the 

existing cost estimation models presented in the literature can lead to biased estimates and the 

presence of heteroscedasticity, potentially causing planners to select less economically efficient 

design alternatives for a given roadway project.    

This chapter presents one alternative approach for initial cost estimates via the integration of a 

maximum likelihood (ML) estimator to search for an optimal data transformation combined with 

least angle regression (LAR) for variable selection/reduction.  The proposed approach leads to 

unbiased and homoscedastic residuals more frequently than current practice and simultaneously 

reduces the unexplained variation via the introduction of new explanatory variables (district 

variation, for example) for the pavement community.  The results and contribution of the work 

presented are particularly important for large projects which could dominate total network 

expenditures in a given year, as the traditional approach tends to lead to (a) overestimation of 

variance and (b) biased estimates that underestimate expected costs.     

Despite the promising results from the case study, opportunities exist to further augment the 

approach proposed in this dissertation.  Future research, for example, could explore the fidelity of 

alternative dimensionality reduction techniques (e.g., factor analysis, LASSO, principal component 

analysis) and non-linear frameworks (e.g., regression trees) to predict bid unit-prices.  Furthermore, 

a similar study could be conducted but now using actual construction costs rather than bid prices.  

Lastly, a comparison of the deviation between estimated and actual prices could be conducted to 

test if the analytical approaches proposed by the authors corrects for the biased towards cost overruns 

as discussed by Flyvberg, Holm et al. (2002). 
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CHAPTER 5: FORECAST FUTURE PAVING 
MATERIAL PRICES 

Motivation for chapter 

As alluded to in previous chapters, planning agencies utilize pavement management systems to 

determine an allocation policy across a network of pavements facilities.  For the most part, these 

frameworks only consider uncertainty as it relates to pavement deterioration, a topic that this 

dissertation has discussed in detail in Chapter 2 and Chapter 3.  Of course, several other exogenous 

inputs affect the decision-making process and are, also, subject to uncertainty; one such input is the 

future price of maintenance actions.  

The academic literature for pavement management, as a whole, is void of studies that consider how 

the price structure (and the associated uncertainty) of different maintenance and rehabilitation 

alternatives may evolve over time (Guo, Liu et al. 2012; Swei, Gregory et al. 2016).  This common 

theme to disregard forecasting future construction prices in the academic literature is also found in 

practice, where state departments of transportation (DOT), such as Alabama, Colorado, and South 

Dakota, assume that the future real price of all inputs will remain constant over time (Demos 2006; 

Mctigure 2013; Qin, Wang et al. 2014; Musselman 2015).  Of course, it is both likely that the cost 

of different construction actions will evolve separately from general inflation and, furthermore, from 

one another.  Therefore, planning agencies are ill-prepared to deal with an uncertain economic 

future that will likely unfold differently from expectations.  Material diversification, the focus of this 

dissertation, is an example of something that might be more common amongst DOTs if pavement 

management tools explicitly accounted for the potential differential cost growth of alternative 

actions. 

The decision to ignore this important input is likely driven by two key facts.  First, little research to 

date has evaluated the fidelity of projection models to estimate expected price and price volatility 

over a multi-decade period for construction commodities.  Second, quite frequently there is a lack 

of significant empirical data to inform reasonable price projections using traditional econometric 

techniques.  These reasons, surely, are no excuse to forego accounting for this source of variation in 
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the decision-making process.  However, these intricacies pose a challenge regarding the development 

of representative volatility estimates that would integrate within a pavement management system. 

Therefore, the goal and contribution of this chapter is the demonstration that long-term 

probabilistic price projection models can be developed that perform well and provide insight into 

future price uncertainty in spite of limited historical data.  Previous research suggests that material 

costs are the dominant contributor to the total cost of roadway construction activities (Herbsman 

1983).  As a result, the focus of this chapter is on forecasting future material prices, namely asphalt 

and concrete, within the construction sector. 

To do so, a hybrid probabilistic forecasting approach is implemented for asphalt and concrete, two 

dominant materials in roadway construction that have significantly less available historical data than 

other material inputs in construction, such as aggregate and cement.  The probabilistic component 

of the projection model, in particular, can significantly augment the existing pavement management 

paradigms as it allows for a better understanding of future volatilities in construction inputs. 

Background on forecasting within the construction community 

Although cost forecasting is not an element of existing pavement management systems, the 

construction community has made significant progress over the last few decades towards developing 

methods to project construction costs and indices.  The methods used in this construction-cost 

projection research falls into two broad categories.  The first, and more common approach, is to 

employ univariate time-series models based upon the very general autoregressive integrated moving 

average (ARIMA) model to project future costs (Hwang 2009).  These types of models have the 

benefit of being easy to implement while also performing quite well for forecasting over short time 

periods.  Hwang (2011) projected a future construction cost index (CCI), a composite measure of 

labor, materials, and equipment, over two years utilizing the aforementioned ARIMA model and 

compared performance using the mean absolute error (MAE).  Ashuri and Lu (2010) used an 

ARIMA model that accounted for seasonality to project future values for the Engineering News 

Record (ENR) CCI over a 12-month span.  Forecasting accuracy was evaluated using the MAE, mean 

square error (MSE), and mean absolute percent error (MAPE).  Ng, Cheung et al. (2000) developed 
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a similar model to forecast the future index value of the Hong Kong construction industry in the 

following quarter.  Performance of the model was measured as the frequency the projection correctly 

predicted an upward or downward trend in the next quarter.   

The alternative approach for forecasting is to derive a relationship between construction costs and 

various endogenous and exogenous factors (Wilmot and Cheng 2003).  As an example, Wilmot 

(1994) used neural networks and regression analysis to predict ENR’s CCI over 1-month and 6-

month periods.  Factors incorporated were quite complex, such as the number of housing starts in 

the construction sector and the prime lending rates charged by banks.  Interestingly, the findings 

suggested that linear regression performed similarly to exponential smoothing (one type of ARIMA 

model) while neural networks, despite being more complex, actually lagged behind both approaches 

in terms of predictability (which was measured by estimating the sum of square errors).  As another 

example, Xu and Moon (2013) characterized the link between general inflation and a CCI via 

cointegration (which will be expanded upon in the methodology section).  The relationship 

established was subsequently used to inform a projection of future construction costs over a 54-

month span with projection accuracy measured with metrics such as the MSE and MAE. 

Despite the prevalence of forecasting in the construction management community, the current 

pavement management frameworks still do not consider future price trends and their uncertainty.  

This tendency is likely because studies to date are geared towards forecasting in the short-term (less 

than 5 years) and only measure the fidelity of their models with deterministic metrics such as the 

MAE, MSE, and MAPE.  On the other hand, pavement management systems evaluate multi-decade 

investments which are subject to a higher level uncertainty given the time horizon.  Therefore, there 

is a need to understand and measure if probabilistic price projections can be developed for the 

timeframes used in pavement management systems to inform better investment decisions.  The 

performance of these models need to be measured not just with some of the deterministic metrics 

alluded to, but also some measure that provides inference on the value of recognizing uncertainty.  

Therefore, the contribution of this chapter is the demonstration that probabilistic price projection 

models can be developed that perform well in terms of expectation and, perhaps more importantly, 

provide excellent estimates of future volatility in material prices (even when data availability is 
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limited).  The remaining sections test this assertion by implementing a probabilistic hybrid approach 

for the price projection of asphalt and concrete and comparing it to the no real price change 

assumption of current pavement management practice.  It is worth mentioning that such a baseline 

model in the forecasting literature has been used in other sectors, including energy (Alquist and 

Kilian 2010).  The tools used in this analysis are available in multiple statistical software packages 

(the analysis is conducted in Stata and EViews), and the data utilized is available in accessible public 

databases, making this research tangible and implementable for practitioners and academics. 

Methodology 

Herbsman (1983) suggests that material costs make up the majority of the total cost for roadway 

projects on average.  Unfortunately, historical data for some of these commodities, particularly as it 

relates to concrete and asphalt, tends to be limited.  On the other hand, significant empirical data 

that precedes the early 1900s exists for many of the key constituents for these materials.  Therefore, 

a hybrid approach is implemented where constituent materials are projected using the univariate 

time-series techniques described and a long-run price trend between paving materials and 

constituents is established to make use of those forecasts. This approach involves four high-level 

steps that are described briefly here and elaborated upon afterwards.    

Step 1: Establish a long-run price trend between paving materials and their constituents –  

A series of methods are utilized to establish a long-run price equilibrium between paving materials 

and constituents.  It is important to note, as will be expanded upon later, that the robustness of the 

tests used in this section are sensitive to sample size.  For this reason, the long-run price equilibrium 

will be established using monthly rather than annual data.   

Step 2: Project the future price of relevant constituents – The first step defines which inputs have 

a statistically significant relationship with the price of concrete and asphalt.  The second step requires 

developing some simple univariate time-series models for the constituents that do have a statistically 

significant relationship.   
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Step 3: Project the future price of paving materials – The constituent projections are integrated 

into the long-run price equilibrium so that future prices of paving materials can be projected.  Monte 

Carlo simulations are utilized to estimate the uncertainty in the forecasts. 

Step 4: Validate relative performance of model to current practice. The fidelity of the price 

projection model is compared to the current assumption via out-of-sample forecasts.  In this step, 

price projections are made prior to the present and are compared to what actually occurred.  

Step 1: Establish a long-run price trend between paving materials and their 
constituents 

Determining the order of integration for a stochastic process 

As discussed in Chapter 3, it is important in time-series analysis to understand if the data at hand 

exhibits stationary or non-stationary characteristics.  As a reminder to the reader of this dissertation, 

a stationary time-series is a stochastic process whose statistical properties, such as mean or variance, 

remain constant over time. If a time-series is non-stationary, however, it can frequently be 

transformed into a stationary process by differencing the dataset (referred to as a differenced 

stationary process); the number of times it takes to difference the process until it becomes stationary 

is referred to as the order of integration.  Two of the more common tests that can be used for 

quantifying the order of integration of a process is the augmented Dickey-Fuller (ADF) and Phillips-

Perron (PP) tests (Leybourne and Newbold 1999).  For this particular chapter, the ADF test is used 

to evaluate if the relevant datasets are stationary or not (and to what order of integration). 

The value of testing for stationarity is that it informs the types of models that should be used for 

understanding if a long-run price equilibrium exists between commodities.  For example, in the case 

that two stochastic processes are stationary over time, a simple ordinary least squares (OLS) 

regression is effective and unbiased for testing the relationship between commodities.  Frequently, 

however, time-series will be non-stationary over time, making the OLS approach susceptible to 

spurious regression (Franses and Dijk 2010).   

An alternative approach that has gained traction over the last two decades for modeling the 

relationship between different factors that are non-stationary is to test for cointegration.  Two non-
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stationary stochastic processes are said to be cointegrated if a stationary linear combination exists 

between them such that the residuals are a non-differenced stationary process.  In other words, only 

in the case that two non-stationary processes are cointegrated can spurious regression be avoided via 

the typical OLS regression approach.  Several empirical studies have made use of cointegration to 

understand the price-link between commodities such as primary and secondary scrap metals and 

crude oil, natural gas, and other refined products (Gjoldberg and Johansen 1999; Ewing, Malik et 

al. 2002; Lanza, Manera et al. 2005; Xiarchos 2006; Ramberg and Parsons 2012).  For the purposes 

of this chapter, if all relevant time-series are non-stationary and integrated to the same order then 

conventional cointegration is implemented.  If that is not the case, however, this research formulates 

an autoregressive distributed lag (ARDL) approach for cointegration that is consistent with the oft-

cited work of Pesaran, Shin et al. (2001).   

The basis of the ADF test is an ARIMA (p, d, q) model, where p is the number of autoregressive 

terms, d is the number of non-seasonal differences, and q is the number of moving average terms.   

More generally, a time-series, P, is defined by: 

 
𝑃𝑡 (1 − ∑𝛼𝑖

𝑝

𝑖=1

𝐿𝑖) (1 − 𝐿)𝑑 = 𝜀𝑡 (1 − ∑𝛽𝑖

𝑞

𝑖=1

𝐿𝑖) + 𝐶              (5.1) 

where Pt and εt are the price and error terms in year t, α and 𝛽 represent the coefficients of the 

autoregressive and moving average terms, C is a constant drift term, and L is the lag operator, 

meaning: 

 𝑃𝑡𝐿𝑖 = 𝑃𝑡−𝑖            (5.2a) 

 𝜀𝑡𝐿𝑖 = 𝜀𝑡−𝑖            (5.2b) 

The ADF tests the null hypothesis of a non-stationary, autoregressive process with a trend against a 

stationary, autoregressive model that is constant over time.  In other words, an ARIMA (p, 1, 0) is 

the null-hypothesis, and is compared to an ARIMA (p+1, 0, 0) process (Cheung and Lai 1995).  The 

regression equation of the ADF test, which is a result of Equation 5.1, is as follows: 



 

66 
   

 
∆𝑃𝑡 = 𝐶 + 𝜆𝑡 + 𝛾𝑃𝑡−1 + ∑ 𝜃𝑖∆𝑃𝑡−𝑝 + 𝜀𝑡

𝑝−1

𝑖=1

             (5.3) 

where ΔPt is the first difference operator, C, λ, θ, and 𝛾 are parameter estimates, and ε represents 

unexplained noise.  For the given regression equation, there are three types of ADF tests that may 

be conducted where λ and/or C are set equal to zero. For simplification, let it be assumed that there 

is no serial correlation amongst the residuals such that Equation 5.3 simplifies to: 

 𝛥𝑃𝑡 = 𝛾𝑃𝑡−1 + 𝜆𝑡 + 𝐶 + 𝜀𝑡             (5.4) 

The purpose of the test is to understand the negativity of γ.  If γ is equal to zero, the process is non-

stationary as the time-series growth is independent upon its price level in year t-1. Hence, it will grow 

at some rate (αt + C) with some error term to account for the uncertainty.  More formally, this is 

referred to as a unit-root being present.  On the other hand, if γ is less than zero, future growth is 

dependent upon the current position of the process.  This outcome implies that if the position in 

year t is high, it is likely growth in year t+1 will turn downward, consistent with what one would 

expect if a process exhibits mean-reversion (i.e., stationarity). 

The ADF test will evaluate the null-hypothesis of γ being equal to zero (i.e., a unit-root existing).  If 

one cannot reject the null hypothesis of γ equaling zero then the process is assumed to be non-

stationary and, therefore, one should difference the time-series until it is stationary.  

The ADF test can be run under three cases: 

1) Unit-root test with no constants:  𝛥𝑃𝑡 = 𝛾𝑃𝑡−1 + 𝜀𝑡 

2) Unit-root test with drift: 𝛥𝑃𝑡 = 𝛾𝑃𝑡−1 + 𝐶 + 𝜀𝑡 

3) Unit-root test with drift and a deterministic time trend: 𝛥𝑃𝑡 = 𝛾𝑃𝑡−1 + 𝜆𝑡 + 𝐶 + 𝜀𝑡 

Selecting which test to conduct is not necessarily intuitive and can have implications on test results, 

leading many authors to propose approaches to increase the likelihood of the correct classification 

of a process.  For this chapter, the approach suggested by Elder and Kennedy (2001) is followed, 

where data is visualized and a simple regression of the price as a function of time is conducted to 

understand the growth of the stochastic process.  If it seems as though the stochastic process has 
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grown over time, then an ADF test is conducted using Case 2.  If the growth over time has remained 

steady, however, Case 1 is implemented. 

It should be emphasized that the above description only includes one autoregressive term.  The 

number of autoregressive terms that should actually be included will typically be selected by using 

some form of a best-fit metric such as the Akaike information criterion (AIC) or Bayesian 

information criterion (BIC), as one lag may not adequately address serial correlation in the process 

(Liew 2004). 

Traditional cointegration in the case that all time-series are non-stationary and integrated to 
the same order 

The most popular cointegration test is the Johansen test, which tests the restrictions imposed by 

cointegration on an unrestricted vector autoregression (VAR) model (Xiarchos 2006).  A VAR model 

captures the interdependencies between multiple time-series and is described by the following 

equation: 

 𝑌𝑡 = 𝐶 + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 + ⋯ + 𝐴𝑝𝑌𝑡−𝑝 + 𝜀𝑡              (5.5) 

where C is a k x 1 vector of constants (k is the amount of annual or monthly price data used), Yt is a 

k x 1 vector of the considered variables, A is a k x k matrix that describes the price transmission 

between the variables considered, and p represents the number of lag terms in the VAR model.  

Given data prior to t-1, the model can project the price for different commodities in year t.  One 

important consideration when constructing a VAR model is to select the appropriate number of 

lags, p.  Unfortunately, the selection of the correct lag order is not necessarily intuitive.  This issue 

in the VAR literature has been considered, and to date, a large body of empirical research has 

explored the topic (Kilian 2001).  Potential goodness-of-fit metrics which can be used are the Akaike 

information criterion (AIC), Hannan-Quinn information criterion (HQIC), and Schwarz Bayesian 

information criterion (SBIC).  One empirical study found that for finite samples with 160 data 

points (this study will use around 350) the HQIC tended to perform better than other common 

metrics (Kilian 2001).  That same study found that the accuracy (via simulation) of estimating the 

true lag order of a model using a sample size of only 80 ranged from 2%-56% across different metrics 
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whereas a sample size of 160 approached an accuracy as high as 89%.  For that reason, this research 

will use monthly rather than annual data for this step. 

As mentioned, the Johansen cointegration test is used to test the restrictions imposed by 

cointegration on the above, unrestricted VAR model (Xiarchos 2006).  This is accomplished by 

transforming the VAR into the following vector error correction model (VECM): 

 
∆𝑃𝑡 = 𝛱𝑃𝑡−1 + ∑ 𝛤𝑖∆𝑃𝑖 + 𝜀𝑡

𝑝−1

𝑖=1

           (5.6a) 

 
𝛱 = ∑𝐴𝑖 − 𝐼𝑖

𝑝

𝑖=1

𝑎𝑛𝑑𝛤𝑖 =  ∑ 𝐴𝑗

𝑝

𝑗=𝑖+1

 (5.6b) 

where I is the identity matrix, Pt and Pt-1 represent the price in year t and t-1, and all other terms 

remain the same as in Equation 5.  If the coefficient matrix, Π, reduces in rank order, r, then it can 

be said that there are r cointegration relationships amongst the variables of interest and the stationary 

linear combination between them is the long-run price equilibrium. 

An alternative approach to cointegration should the stochastic processes not be integrated to 
the same order 

The motivation for traditional cointegration stemmed from the prevalence of integrated time-series 

in the econometric literature.  Unfortunately, the approach described breaks down when testing for 

a relationship between a dependent variable (which is differenced stationary) and relevant covariates 

that are not all differenced stationary. More recently, Pesaran and Shin (1999) and Pesaran, Shin et 

al. (2001) developed an approach that overcomes this shortcoming by formulating an unrestricted 

error correction model (ECM) from an autoregressive distributed lag (ARDL) framework.  The very 

general ARDL (p, q1,.., qk) model has the form of:  

 
𝑌𝑡 = 𝑐 + ∑ 𝛼𝑡−𝑝𝑌𝑡−𝑝

𝑝

𝑝=1

+ ∑∑𝛽𝑗,𝑡−𝑖𝑋𝑗,𝑡−𝑖

𝑞𝑗

𝑖=0

𝑘

𝑗=1

+ 𝜀𝑡 (5.7) 
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where p is the number of autoregressive terms of the dependent variable Y, qk is the number of 

autoregressive terms of the kth covariate, α and β are coefficient estimates and εt is unexplained 

variation.  In other words, the price of the relevant time-series is not only a function of the lagged 

values of itself (as was noted in the ARIMA case) but also the independent variables as they are 

distributed over time.  This important aspect lends itself in understanding the short-term and long-

term interactions amongst commodities.  Specifically, via manipulating Equation 7, one can extract 

the long-run price equilibrium between covariate k and the dependent variable as: 

 
𝜃𝑗 =

∑ 𝛽𝑗,𝑡−𝑖
𝑞𝑗
𝑖=0

1 − ∑ 𝛼𝑡−𝑝
𝑝
𝑝=1

 (5.8) 

Similar to Johansen, Pesaran and Shin (1999) develop a cointegration equation but this time by 

transforming the ARDL (p, q1,.., qk) model in Equation 7 into an unconstrained error correction 

model (ECM).  This is done so by differencing the ARDL model and integrating the long-run price 

equilibrium equations.  As an example, if the model is ARDL (1,1) then the unconstrained ECM 

simplifies to: 

 ∆𝑌𝑡 = 𝑐 + 𝛾1,𝑡−1∆𝑋1,𝑡−1 + 𝛿0𝑌𝑡−1 + 𝛿1𝑋𝑡−1 + 𝜀𝑡 (5.9) 

Based upon the above ECM, a Bounds test is conducted that evaluates the null hypothesis of the 

level terms (in this case δ0 and δ1) being equal to zero (Pesaran, Shin et al. 2001).  The Bounds test 

involves computing the F-statistic and comparing it to the lower and upper bound critical values 

computed by Pesaran, Shin et al. (2001) In the case the null hypothesis is rejected (which is when 

the F-statistic is greater than the critical values), one can say the time-series of interest are cointegrated 

with one another. 

Step 2: Project the future price of relevant commodities 

The next step in this analysis is to develop price projections for each constituent that has a statistically 

significant price relationship with asphalt and concrete.  Similar to the previous discussion, it is 

important to understand the price behavior of each constituent to inform a reasonable forecasting 

model.  What was not discussed previously, however, is that the ADF test is sensitive, similar to 
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cointegration, to sample size (Pindyck 1999). Since the constituent forecasts will use data that is 

annual rather than monthly, the sample-size to analyze will be limited.  Unit-root test can have 

difficulty distinguishing if γ = 0 or if γ is slightly less than zero, implying the time-series exhibits 

slowly mean-reverting characteristics, and so this study implements the ADF test discussed and an 

alternative procedure.  This procedure is to estimate the parameters of a stationary, first-order auto-

regressive process ARIMA (1,0,0), where: 

 𝑃𝑡 = 𝜌𝑃𝑡−1 + 𝜇 + 𝜀            (5.10) 

Since a stationary process is, by definition, mean-reverting, it is equivalent to an Ornstein-Uhlenbeck 

process which reverts to a constant mean: 

 𝑑𝑃𝑡 = 𝐾(𝜇 − 𝑃𝑡)𝑑𝑡 + 𝜎𝑑𝑡𝑊𝑡            (5.11) 

where K is the speed of mean-reversion, μ is the mean value the process tends to revert to, σ 

represents the volatility, and Wt is Brownian motion (unexplained variation).  The discretized form 

of this (ignoring the second term) is:  

 𝑃𝑡 − 𝑃𝑡−1 = 𝐾(𝜇 − 𝑃𝑡−1)          (5.12a) 

 𝑃𝑡 = (1 − 𝐾)𝑃𝑡−1 + 𝐾𝜇          (5.12b) 

Therefore, if one estimates the parameters of an ARIMA (1,0, 0) process, the rate of mean-reversion 

is simply 1-ρ.  This means that if ρ is nearly one, the time-series exhibits nearly no reversion to a 

mean.  Previous research has shown the rate of reversion for certain commodities can take up to a 

decade or more, and so if ρ < 0.9 year-1, this paper considers the process as stationary (Pindyck 1999).  

A nice aspect of the latter approach is that it is quite intuitive. 

Constituent Projection Model 

Depending upon the characterization of historical data for the time-series of interest, multiple 

modeling techniques are available.  For this research, if a time-series exhibits stationary 

characteristics then it is assumed to follow an ARIMA (1, 0, 0) process. Although this analysis could 

further study the number of lags to include through a best-fit measure, only one lag is incorporated 
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as this is both simpler and the implication is minimal given that the proposed application for this 

work is for projecting prices decades, not years, into the future. 

In the case, however, that a process has historically behaved in a non-stationary manner (i.e., 

differenced stationary), a geometric Brownian motion (GBM) model estimated of the following 

form:   

 𝑃𝑡 = 𝑃𝑡−1𝑒
𝜇−1

2𝜎2+𝜎𝑊𝑡          (5.13) 

where Pt is the price in year t, µ and σ represent the logarithmic growth rate and standard deviation 

(volatility measure), and Wt is standard Brownian motion.  Parameters can be estimated by 

transforming the dataset into logarithmic form and calculating the sample’s differenced average and 

standard deviation. 

Oil Projection Model 

As shown in Figure 5-1, the detrended historical price for oil over the last century has exhibited two 

characteristics, as discussed by Pindyck (1999).  First, the real price of oil has tended to exhibit mean 

reversion to a continually shifting mean, which represents the continually shifting marginal cost of 

oil production.  This reversion has taken the form of a quadratic function, which intuitively makes 

sense: initial oil production became cheaper as technology improved, but as demand and cost to 

extract have increased over time, so too has the marginal cost.  Second, the time it takes for the price 

of oil to revert back to its marginal cost can take up to a decade.  Due to its monopolistic nature, the 

price of oil has experienced short-run prices that are extremely volatile and do not match expected 

competitive prices.  Fortunately, given that the purpose of this research is to project the long-term 

cost of concrete and asphalt, the implication of these short-term price swings should be mitigated. 

Based upon these qualitative characteristics, one possible model is the Ornstein-Uhlenbeck mean-

reverting process, as described previously, but this time to a quadratic function (Pindyck 1999):    

 𝑑𝑃𝑡 = 𝐾𝐶𝑑𝑡 + 𝜀𝑡          (5.14a) 
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 𝐶 = 𝛼𝑡2 + 𝛽𝑡 + 𝜇 − 𝑃𝑡          (5.14b) 

 
Figure 5-1. Detrended real-price of crude oil over time (BP 2014). 

K is the speed of mean-reversion, C is the quadratically shifting mean-value the process tends to 

revert to, Pt is the price in year t, εt represents the unexplained noise of the process, and α, 𝛽, and μ 

are constants.  Pindyck (1999) builds upon this general model by considering a multivariate case that 

allows for fluctuations in both level and slope.  Hence, Equation 11 now becomes: 

 𝑑𝑃𝑡 = (𝐾𝐶 + 𝜆1𝑌+𝜆2𝑍𝑡)𝑑𝑡 + 𝜀𝑡          (5.15) 

where in addition to the previous terms, Y and Z are themselves their own Ornstein-Uhlenbeck 

process, and λ1 and λ2 are constants such that: 

 𝑑𝑌 = 𝛿1𝑌𝑑𝑡 + 𝜀𝑡          (5.16a) 

 𝑑𝑍 = 𝛿2𝑍𝑑𝑡 + 𝜀𝑡          (5.16b) 

where, similarly, δ1 and δ2 are constants.  Combining all terms in the discretized case leads to the 

following solution (where C1 thru C6 are constant terms and θ1,t and θ2,t are unobservable state 

variables): 

 𝑃𝑡 = 𝐶1 + 𝐶2𝑡 + 𝐶3𝑡2 + 𝐶4𝑃𝑡−1 + 𝜃1,𝑡 + 𝑡𝜃2,𝑡 + 𝜀1𝑡          (5.17a) 
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 𝜃1,𝑡 = 𝐶5𝜃1,𝑡−1 + 𝜀2𝑡          (5.17b) 

 𝜃2,𝑡 = 𝐶6𝜃2,𝑡−1 + 𝜀3𝑡          (5.17c) 

It is important to note that many other oil price forecasting models exist and could potentially be 

used as a substitute for the approach developed by Pindyck (1999).  In fact, future research could 

potentially explore the results of the asphalt and concrete forecasting model using alternative 

approaches available (EIA 2015). 

Step 3: Project the future price of paving materials 

Once price projections have been derived for each constituent material, the next step is to integrate 

them within the paving material price forecast.  This step is accomplished by inputting each 

constituent price projection into the derived long-run price equilibrium in Step 1 (and their 

respective uncertainty terms).  An unfortunate consequence of using monthly data via the bureau of 

labor statistics (BLS) for estimating a long-run price equilibrium while employing annual data from 

the U.S. Geological Survey (USGS) for the constituent price projections is that the two data sources 

have closely, but not perfectly, aligned over time.  For that reason, constituent forecasts are generated 

using the trends established via USGS but shifting the initial starting points to BLS values.  For each 

forecast, a Monte Carlo simulation is conducted for developing a large sample of 40-year forecasts 

in order to estimate the underlying uncertainty of the forecasting model. 

Step 4: Validate Performance of Model Relative to Current Practice   

An important step to quantify the performance of the proposed approach is to benchmark its 

performance relative to current practice.  One common method to measure the fidelity of a model 

is out-of-sample forecasting.  This technique is grounded in the concept that one should construct a 

forecasting model using data up until a certain moment in time, project the future, and compare 

the error in the prediction relative to what actually occurred.  For the purposes of this chapter, out-

of-sample forecasts are constructed between 1985-2000 to generate a sample of predictions using the 

proposed approach.  It is important to recognize that the constituent price forecasts only use data 

up until the time of the forecast (as opposed to all data that is privy to the researchers) for model 

selection and parameter estimation so that possible bias is eliminated. 
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Ideally, one should compare the performance of the proposed model relative to the current baseline. 

Unfortunately, since the latter assumes future prices are static over time, one can only compare the 

two alternatives utilizing a deterministic measure.  Therefore, the sample errors of the expected 

future prices using both approaches are utilized to estimate the MAPE of both models:   

 
𝑀𝐴𝑃𝐸 =

100%
𝑛

∑|
𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐴𝑐𝑡𝑢𝑎𝑙
|

𝑛

𝑖=1

          (5.18) 

With that said, it is important to elicit how well the probabilistic approach captures the true 

uncertainty in price forecasting.  Therefore, this research also tracks for each out-of-sample forecast 

whether or not future prices fell within the projected 75th and 90th percentile prediction intervals 

(PI).  A one sample binomial test is subsequently conducted in each year to understand if the actual 

frequency future prices fell within the projected PI is significantly different from the expected 

frequency.  No research, as far as this dissertation is aware of, have evaluated the probabilistic 

performance of a forecasting model using the proposed technique. 

Data Analysis and Results 

This section outlines data and results following the four steps outlined previously: implementation 

of cointegration, projection of commodities and paving materials, and validation of model 

performance via out-of-sample forecasting.  

Step 1: Establish a long-run price trend between paving materials and their 
constituents 

This analysis uses monthly data from the Bureau of Labor Statistics (BLS) for the ready-mix concrete, 

asphalt paving, crushed stone, and cement datasets dating back to January of 1985 and Brent spot 

oil prices made first available starting in May of 1987 (BLS 2015a-d; EIA 2015).  Again, the reasoning 

for using monthly data rather than annual data is due to the minimum sample size needed for 

cointegration to run effectively.  All time-series are deflated with the consumer price index (CPI) and 

normalized such that the average value for each index in 2013 is 100 (BLS 2015e).  Figure 5-2 

presents the price indexes analyzed in this section. 
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Figure 5-2. Historical real-price of concrete and its constituents (BLS 2015a-e; EIA 2015). 

An ADF test is conducted for all five time-series for lag orders selected by the AIC.  Results from the 

ADF test are presented in Table 5-1, where a test statistic greater than the critical value suggests that 

a unit-root exists.  The reason that the BIC is ignored in this section is that further inspection of the 

residuals of the ADF regression suggest that serial correlation exists when using the BIC.  This is 

because the BIC tends to select a lower lag order, leading to the exclusion of seasonality in the data.  

The presence of seasonality can be noted by both plotting the partial autocorrelation function and 

observing that many of the lag orders selected by the AIC hover around 12. 

Table 5-1. ADF test results for lag orders selected by AIC, where a test statistic greater than the critical value 
suggests that a unit-root exists. Starred values are less than 5% critical values. 

No Difference and ADF Case 2 where 𝜟𝒀𝒕 = 𝜸𝒀𝒕−𝟏 + 𝜷 + 𝜺𝒕 

Commodity Number of lags Test statistic 1% Critical Value 5% Critical Value 

Concrete 12 -1.693* -2.337 -1.649 
Asphalt 10 -0.041 -2.337 -1.649 

Cement 12 -3.157* -2.337 -1.649 

Crushed Stone 13 0.039 -2.337 -1.649 

Oil 13 -1.408 -2.337 -1.649 

 First Difference and ADF Case 1 where 𝜟𝒀𝒕 = 𝜸𝒀𝒕−𝟏 + 𝜺𝒕 

Asphalt 16 -4.117* -2.580 -1.950 

Crushed Stone 12 -2.726* -2.580 -1.950 

Oil 12 -6.072* -2.580 -1.950 

Regressing all of the indexes over time indicates that growth has been positive and significant for 

each time-series and so Case 2 of the ADF test is employed for all datasets.  The test statistic is greater 
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than the 5% critical values for asphalt, crushed stone, and oil, suggesting that they all exhibit non-

stationarity.  When these three time-series are differenced, however, and Case 1 (the most restrictive 

case) is applied, the test statistic is less than the 5% critical values for all commodities.  This suggests 

that the null hypothesis of a unit-root existing can be rejected, and therefore, these three time-series 

are likely integrated to the same (first) order.  The asphalt model, therefore, can be analyzed via 

traditional cointegration where a VAR model is computed to test for a long-term equilibrium 

amongst relevant inputs. 

On the other hand, since the concrete and cement time-series are both stationary, a simple OLS 

regression could be conducted to establish whether a long-run price equilibrium exists between just 

the two commodities.  However, since concrete and crushed stone are integrated to different orders, 

an ARDL cointegration model must be constructed first to test if crushed stone and concrete have 

shifted stochastically over time together – if that is the case, it is reasonable to implement an OLS 

model for concrete as a function of crushed stone and cement. 

Establishing a long-run equilibrium for asphalt 

A VAR model of three lags (based upon the HQIC) is constructed to explore the long-run price 

relationship between asphalt, crushed stone, and oil.  In order to characterize the number of 

cointegration relations that exist, this research uses the trace statistic, where the first rank order, r, 

that is less than the critical value represents the number of cointegration relationships.  From 

Table 5-2, the asphalt model is clearly cointegrated with both of these constituents over time.  

Table 5-2. Johansen test results for the asphalt model.  The first value that is less than the 5% critical value 
is starred. 

Asphalt VAR model with crushed stone and oil 
Rank trace statistic 5% critical value 

0 67.42 29.68 
1 21.97 15.41 
2 0.00* 3.76 

From the cointegration analysis, a stationary linear combination is derived from the VECM for 

asphalt, representing the long-run price equilibrium between constituents and paving material 

prices: 
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 𝑃𝐴𝑠𝑝ℎ𝑎𝑙𝑡,𝑡 = 1.41𝑃𝐶𝑟𝑢𝑠ℎ𝑒𝑑𝑆𝑡𝑜𝑛𝑒,𝑡 + 0.20𝑃𝑂𝑖𝑙,𝑡 − 61.6 + 𝑁(0,3.5) (5.19) 

where Px,t is the price of commodity x in year t and the last term is a Gaussian distributed random 

error.  The price models work extraordinarily well, with an R2 of 0.96, as can be noted in Figure 5-3: 

    
Figure 5-3. Predicted price using long-run price equilibrium (dashed) versus what actually occurred (solid) for 

concrete (left side) and asphalt (right side). 

Establishing a long-run equilibrium for concrete 

An unrestricted ECM is developed to test for the existence of cointegration between crushed stone 

and concrete.  Since the dependent variable in this framework must be a first difference process, 

crushed stone is modeled as a function of concrete.  Estimation of the parameters for the ECM is of 

the following form (with lag order selected by the BIC):  

 ∆𝑃𝑐𝑟𝑢𝑠ℎ𝑒𝑑𝑆𝑡𝑜𝑛𝑒,𝑡 = −1.27 + 0.21∆𝑃𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒,,𝑡−1 − 0.01𝑃𝐶𝑟𝑢𝑠ℎ𝑒𝑑𝑠𝑡𝑜𝑛𝑒,𝑡−1 + 2.17𝑃𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒,𝑡 (5.20) 

A Bounds test is subsequently conducted to evaluate the null hypothesis of the level terms being 

equal to zero (i.e., cointegration does not exist).  The F-statistic for this particular model is 10.346, 

which is greater than the upper bound 1% critical value of 7.84 as established per Pesaran (2001).  

Therefore, the null hypothesis can be rejected and it is reasonable to model concrete as a function 

of crushed stone and cement in terms of its levels via OLS regression.  The long-run price 

equilibrium is estimated as follows:  
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 𝑃𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒,𝑡 = 0.51𝑃𝐶𝑟𝑢𝑠ℎ𝑒𝑑𝑆𝑡𝑜𝑛𝑒,𝑡 + 0.44𝑃𝑐𝑒𝑚𝑒𝑛𝑡,𝑡 + 5.3 + 𝑁(0,1.6) (5.21) 

with an R2 of 0.95 and p-values significantly less than 0.01.  A comparison of actual concrete prices 

over time relative to the long-run equilibrium can be noted in Figure 5-3.  Interestingly, the long-run 

coefficients for crushed stone and cement using an ARDL (p, qcrushed stone, qcement) are 0.48 and 0.37, 

respectively, further suggesting the OLS model provides reasonable estimates of the long-run 

relationship. 

Step 2: Project the future price of relevant commodities 

Historical data is readily available dating back to the early 1900s via USGS for cement and crushed 

stone while British Petroleum has collected real price data for oil since 1870 (BP 2014; Kelly and 

Matos 2014a,b).  Figure 5-4 superimposes the historical real-price of the three time-series.  As noted 

earlier, the historical behaviors must first be characterized so that an appropriate model can be 

inferred.  The only constituent this does not apply to is oil since a pre-determined model is specified 

based upon previous research. 

 
Figure 5-4. Historical real-price for cement, crushed stone, and oil with 2013 as the base year. 
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Constituent Projection Model 

Similar to the previous section, an ADF test is conducted for Case 2, the most appropriate model 

for each time-series.  Table 5-3 presents the results from the ADF test for cement and crushed stone, 

where again a test statistic greater than the critical value suggests that a unit-root exists..  Unlike the 

crushed stone time-series with a test statistically significantly greater than even the 10% critical value, 

the cement time-series can be classified as non-stationary using 11 lags while stationary with only 1 

lag.  In order to better understand if the cement time-series is non-stationary or slowly mean-

reverting, parameters are estimated for an ARIMA (1,0, 0) process.   The estimated autoregressive 

coefficient corresponds to a rate of reversion of 9.1 years-1 (ρ = 0.89), suggesting that a slow, yet 

present, mean-reversion is taking place. 

Table 5-3. ADF test results for USGS data for lag orders selected by BIC and AIC criteria, where a test statistic 
greater than the critical value suggests that a unit-root exists. Starred values are less than 5% critical values. 

No Difference and ADF Case 2  𝜟𝒀𝒕 = 𝜸𝒀𝒕−𝟏 + 𝜷 + 𝜺𝒕 

Commodity 
Number of 

lags 
Selecting 
Criteria 

Test statistic 
1% Critical 

Value 
5% Critical 

Value 
10% Critical 

Value 

Cement 1 BIC -2.881* -2.361 -1.659 -1.289 

Cement 11 AIC -1.109 -2.369 -1.662 -1.291 

Crushed Stone 4 BIC, AIC -0.715 -2.367 -1.661 -1.291 

Parameters for each constituent model are estimated with 2013 as the base year as was shown in 

Figure 5-4. Given the characteristics of the crushed stone time-series, a geometric Brownian motion 

(GBM) process is selected with the following parameter estimates: 

 Crushed Stone: 𝑃𝑡 = 𝑃𝑡−1𝑒(−0.0045+𝑁(0,0.047)) (5.22) 

where Pt is the price in year t, Pt-1 is the price in year t-1, and N (μ, σ) is a normal distribution with a 

mean of μ and a standard deviation of σ.  As for cement, an ARIMA (1, 0, 0) is estimated as follows: 

 Cement: 𝑃𝑡 = 0.89𝑃𝑡−1 + 14.3 + 𝑁(0,9.5) (5.23) 

Oil Projection Model 

To estimate the parameters of equations 5.17a-c, a Kalman filter is used, which uses input data to 

estimate the ‘optimal’ system state.  A Kalman filter operates recursively, estimating parameters using 

a maximum likelihood (ML) estimator. After running the model, it became quite clear that many of 
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the p-values for the final values and/or the coefficients of the state space variables were quite large.  

As such, a simple quadratic mean-reverting process is estimated instead via OLS regression.  It should 

be noted the state space model and OLS regression were compared and resulted in very similar price 

projection trends.  The R2 for this particular model is 0.84 with the following parameter estimates: 

 
 

𝐿𝑜𝑔(𝑃𝑡) = 65.1 − 0.067𝑡 + 1.75 ∗ 10−5𝑡2 + 0.82𝐿𝑜𝑔(𝑃𝑡−1) + 𝑁(0,0.10) (5.24) 

The above model leads to an expected increase in real oil prices twice their 2013 levels by 2025.  In 

order to account for the model potentially overestimating future costs, a price cap of 2.4 times the 

2013 real-price of oil is implemented, which is consistent with what the U.S. Energy Information 

Administration (EIA) considers as its “high” price scenario by 2040 (Conti 2015).  It should be 

emphasized that because of the long-run price equilibrium estimated, where the coefficient in front 

of the price of oil is much less than one, some of the concerns with the oil projection model are 

muted. 

Step 3: Project the future price of paving materials 

In the previous section, a set of price projection models have been developed for the constituents 

that have a long-run price trend with asphalt and concrete.  The last step is to integrate those 

constituent models within the long-term price equilibrium for asphalt and concrete.  Equations 

5.25a-e summarizes the five key equations listed throughout the balance of this paper: 

 𝑃𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒,𝑡 = 1.41𝑃𝐶𝑟𝑢𝑠ℎ𝑒𝑑𝑆𝑡𝑜𝑛𝑒,𝑡 + 0.20𝑃𝑂𝑖𝑙,𝑡 − 61.6 + 𝑁(0,3.5) 

𝑃𝐴𝑠𝑝ℎ𝑎𝑙𝑡,𝑡 = 0.51𝑃𝐶𝑟𝑢𝑠ℎ𝑒𝑑𝑆𝑡𝑜𝑛𝑒,𝑡 + 0.44𝑃𝑐𝑒𝑚𝑒𝑛𝑡,𝑡 + 5.3 + 𝑁(0,1.6) 

(5.25a) 

(5.25b) 

 𝑃𝐶𝑟𝑢𝑠ℎ𝑒𝑑𝑆𝑡𝑜𝑛𝑒,𝑡 = 𝑃𝑡 = 𝑃𝑡−1𝑒(−0.0045+𝑁(0,0.047)) (5.25c) 

 𝑃𝑐𝑒𝑚𝑒𝑛𝑡,𝑡 = 𝑃𝑡 = 0.89𝑃𝑡−1 + 14.3 + 𝑁(0, 9.5) (5.25d) 

 𝐿𝑜𝑔(𝑃𝑡) = 65.1 − 0.067𝑡 + 1.75 ∗ 10−5𝑡2 + 0.82𝐿𝑜𝑔(𝑃𝑡−1) + 𝑁(0,0.10) (5.25e) 

Future prices of asphalt and concrete are subsequently simulated thousands of times over the next 

40 years to estimate the mean, 5th percentile, and 95th percentile projected price in each year, as 
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shown in Figure 5-5.  Interestingly, although future expected prices do not differ greatly between the 

two models, expected volatilities stepping into the future are significantly different. 

 
Figure 5-5. Probabilistic real-price projection for concrete (gray) and asphalt (black).  Dashed lines represent the 

5th/95th percentile of the forecasts and solid lines represent the mean expected price. 

Step 4: Validate Performance of Model Relative to Current Practice   

Due to the recognized uncertainty in deriving an effective price model, especially in the case of oil, 

it is pertinent to characterize how well the selected concrete and asphalt model would have 

historically performed.  Out-of-sample price forecasts are conducted between 1985 and 2000 using 

the established approach in this paper.  Model fidelity is measured using a traditional deterministic 

metric, the MAPE, and a probabilistic metric that tracks the frequency future forecasts fall within 

the forecasted prediction index (PI).   Since current practice (future real prices are constant) ignores 

uncertainty, the former metric can only be used to benchmark the relative performance of the 

proposed hybrid approach.  It is important to clarify that data made available for constituents after 

the year of the out-of-sample forecasts are excluded in the model selection and parameter estimation 

process.  Therefore, data used for parameter estimation could be viewed as the ‘training’ set while 

data available after the year of the out-of-sample forecast can be seen as the ‘validation’ set. 
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Figure 5-6 presents the MAPE of the established approach relative to current practice.  The hybrid 

projection approach performs no worse and generally better than current practice for asphalt.  As 

for concrete, the proposed model only performs better after a decade.  Evaluating the results in terms 

of the MAPE, however, undermines the true contribution of this work.  Figure 5-7 presents the 

frequency that actual asphalt and concrete prices fell within the hypothesized 75th and 90th prediction 

intervals (PI).  Values that fall outside of the dashed lines reject the null hypothesis via a one sample 

binomial test (at a 5% level of significance) that the measured frequency is the same as the theoretical 

PI.  For a PI of 75%, both the asphalt and concrete models generally fall within the lower and upper 

limits, suggesting the model provides a good description of uncertainty when excluding the tails of 

the distribution.  For a PI of 90%, the concrete model generally captures all actual realizations of 

the future; results for the asphalt model, however, indicate that the tails of the distribution do not 

capture the full volatility in asphalt prices.    

 
Figure 5-6. MAPE of the asphalt (black) and concrete (grey) time-series using a) the established price model 

in this thesis (solid color) and b) a model where real prices remain constant (dashed). 
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Figure 5-7. Frequency that the out-of-sample forecasts for asphalt (black) and concrete (grey) fall within the 75th 

(top) and 90th (bottom) percentile prediction intervals. Dashed lines represent the upper and lower bounds of the 
null hypothesis that the sample frequency is the same as the prediction interval per a one sample binomial test at a 

5% significance. 

Conclusions    

Over the last decade, pavement management systems have grown in sophistication and can now take 

into account a range of sources of variation that exist in the decision-making process.  Unfortunately, 

these frameworks do not account for possible differential future changes in the cost of construction 

inputs.  In part, this is because studies to date have neither evaluated the performance of forecasting 

models over multiple decades nor compared performance using a probabilistic metric. 
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This chapter presents a first of its kind case study that evaluates the fidelity of probabilistic price 

projections within a context of limited data availability and over extended time-horizons.  The results 

from the case study demonstrate that, in general, the proposed model performs similar to current 

practice in a deterministic sense.  However, the real contribution of the proposed approach is that 

it does an excellent job of representing and predicting the volatility of these commodities.  As such, 

the models described here not only outperform current practice on average in the long-run, but also 

easily support a probabilistic, risk-based paradigm within pavement management systems that will 

be presented in full in Chapter 7.  
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III. ALLOCATION POLICY 

SYNTHESIS 

Part III is composed of a single chapter that details the allocation algorithm for the stochastic 

simulation model in Part IV.  A simple greedy heuristic algorithm is proposed that can scale 

computationally for realistic problems sizes of interest for the pavement management community.  

It can also make decisions sequentially over time, an important aspect for estimating the value of 

real options in such systems.  Although simple and intuitive, it is important to understand the 

properties of this particular technique for pavement management problems.  Unfortunately, 

deriving the fidelity of such algorithms can be quite difficult, and so this section estimates it by 

comparing its solution to that of a recursive divide and conquer algorithm for a range of small, 

deterministic problems.  The latter technique will search across the decision space until it finds the 

globally optimal solution for the problem at hand.   

Across the case studies, the greedy technique proposed falls within 2% of the globally optimal 

solution 96% the time.  These results strongly indicate that the greedy heuristic for the particular 

set of constraints, objectives, and system model set forth in this research provides a high fidelity 

solution with low computational complexity.  Therefore, this dissertation foregoes alternative 

algorithmic approaches for sequential decision-making under uncertainty that are discussed earlier 

in the chapter.  Such methods could be important, however, should future research implement a 

system model or set of constraints that caused the greedy heuristic to drift far from the global 

optimum.  
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CHAPTER 6: NETWORK-LEVEL ALLOCATION 
POLICY 

Sequential decision-making under uncertainty 

As planning agencies continue to search for ways to maintain roadway networks with limited 

financial resources, it is important that pavement management systems embed near-optimal 

allocation policies when prioritizing alternative investments.  Because the decision-making process 

is subject to uncertainty, the optimal maintenance policy will evolve as uncertainty unfolds over 

time.  As a result, a critical element of these allocation policies is their ability to adapt with future 

conditions.   

Amongst the existing literature, as discussed in Chapter 2, a significant portion of academic research 

assume a deterministic future.  These papers, consequently, search for a globally optimal allocation 

plan for all years across the analysis period at once.  This static approach to pavement management, 

with of course small nuances, can also be found across many of the recent probabilistic approaches 

of today (Chootinan, Chen et al. 2006; Wu and Flintsch 2009).  In the case of Wu and Flintsch 

(2009), for example, a highly conservative maintenance plan is proposed to reduce the risk of 

exceeding an uncertain future budget.  A consequence, however, is that although the fixed 

maintenance policy has a low risk of cost overruns over the prescribed analysis period, the proposed 

solution cannot adapt should the future available budget not follow a pessimistic path.  Thus, it is 

likely that the risk-averse solution has a lower expected performance than an allocation policy that 

made decisions sequentially, even if not optimally, over time. 

Having said the above, several studies do correctly assume that the optimal maintenance policy of 

pavement networks should be structured as a sequential decision problem (Kuhn 2012; Yeo, Yoon 

et al. 2013; Zhang, Keoleian et al. 2013).  These papers, although not explicitly considering 

uncertainty for exogenous information beyond pavement deterioration, utilize Bellman’s principal 

of optimality to structure a recursive dynamic program (DP) to find a near-optimal allocation policy 

for roadway systems (Yeo, Yoon et al. 2013).  The models generally follow a two-stage bottom-up 

approach to minimize total cost to the agency and users, where in the first stage the best action is 
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found for each pavement segment via a recursive DP and in the second stage a knapsack technique 

is used to apply allocation funds to the most promising projects.  Mathematically, the first stage of 

the two-stage bottom-up solution is of the general form: 

 𝑉𝑛,𝑡(𝑎𝑛,𝑡
∗ ) = min

𝑎𝑛,𝑡𝜖𝐴𝑛,𝑡
𝐶𝑛,𝑡(𝑎𝑛,𝑡

∗ ) + 𝛼E[𝑉𝑛,𝑡+1(𝑆𝑛,𝑡+1(𝑆𝑛,𝑡, 𝑎𝑛,𝑡
∗ ))] (6.1a) 

 𝑉𝑛,𝑡(𝑎𝑛,𝑡 = 0) =𝛼E [𝑉𝑛,𝑡+1(𝑆𝑛,𝑡+1(𝑆𝑛,𝑡, 𝑎𝑛,𝑡 = 0))] (6.1b) 

Vn,t is the total expected cost of an action, an,t, on the nth segment in year t.  The cost of an action is 

a function of its immediate agency cost, Cn,t, and expected cost-to-go to the agency and user, Vi,t+1, 

assuming that in all future years the agency follows an optimal policy for each segment.  The optimal 

action is a function of the current condition/state of a pavement segment, Sn,t, and it is assumed that 

future costs should be discounted at some rate, α.  For the most part, current approaches only store 

the total expected cost of two decisions from the subset of all actions available, An,t: the cost of the 

optimal action, a*
n,t, and the cost to do nothing, an,t = 0 (Yeo, Yoon et al. 2013).  The implication of 

ignoring the alternative available actions is small should the pavement network be sufficiently large. 

The cost minimization problem, as elaborated upon in Chapter 2, is preferred because it leads to a 

non-trivial maintenance solution in the first stage of the allocation algorithm.  More specifically, in 

a performance maximization framework where there is no resource constraint at the facility-level, 

the optimal policy for any segment is to apply a maintenance action in all years irrespective of the 

condition of the roadway.  On the other hand, for the cost minimization approach, maintenance 

actions will only be applied at times where the user cost savings from such treatments would 

outweigh the cost to the agency.  Of course, two problems with framing the problem in the manner 

is (a) the difficulty in mapping pavement condition to user cost and (b) that planning agencies are 

more interested in the structural condition and ride quality of pavement assets (Rangaraju, 

Amirkhanian et al. 2008). 

Nevertheless, the second stage of the two-stage bottom-up algorithm follows a knapsack approach.  

Resources are allocated to the set of actions that minimize total expected costs (TECt) moving 

forward subject to an available budget for the given year (Bt):  
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min𝑇𝐸𝐶𝑡 = ∑ 𝑉𝑛,𝑡(𝑎𝑛,𝑡)

𝑁

𝑛=1

             (6.2) 

 subject to  

 𝑎𝑛,𝑡 ∈ 𝐴𝑛,𝑡 =  {𝑎𝑛,𝑡
∗ , 𝑎𝑛,𝑡 = 0}             (6.3) 

 
∑𝐶𝑛,𝑡(𝑎𝑛,𝑡)
𝑁

𝑖=1

≤𝐵𝑡             (6.4) 

The authors of the previously mentioned studies have found that the discussed approach leads to a 

high fidelity solution for network-level allocation problem (Zhang, Keoleian et al. 2013).  Although 

these research efforts do not explicitly account for the uncertainty beyond pavement deterioration 

underlying the decision-making process, the concept of sequential decisions made over time is an 

important element for the real options approach.  An important methodological gap that previous 

research has not fully addressed, however, is the determination of an allocation policy (referred to 

interchangeably as “decision-rule”) that leads to a near-optimal solution for the performance 

maximization objective. 

As a result, the purpose of this chapter is the development of a simple heuristic that provides high-

fidelity allocation choices for the performance maximization problem.  Such a technique is necessary 

for realistic network-size problems, deterministic or probabilistic, given the computational 

complexity of solving high-dimensional problems.  A greedy heuristic algorithm for sequential 

decision-making is proposed in this chapter that overlaps with a similar technique developed by 

Ouyang and Madanat (2004) but for the cost-minimization problem.  The fidelity of the algorithm 

is measured by comparing its solution for the deterministic maintenance problem to that of a mixed-

integer non-linear program (MINLP) solved with a branch and bound (B&B) solver that searches for 

the global optimum. 

Methodology 

The methodology section for Chapter 6 is comprised of two sections.  First, a MINLP is presented 

that can be solved via a B&B (e.g., divide and conquer) algorithm.  The B&B solver, although 

computationally expensive, will eventually find the globally optimal allocation policy across a 

network of pavement facilities for the deterministic problem.   As a result, the MINLP acts as the 
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benchmark to characterize the fidelity of the heuristic approach for decision-making.  Subsequently, 

the greedy algorithm is detailed in this chapter, which again overlaps with the work of Ouyang and 

Madanat (2004) for cost minimization problems.  The objective function, which is the same as that 

discussed in Chapter 4 and Chapter 7, is to minimize traffic-weighted roughness (IRI) of all 

pavement segments across a roadway network.  The two algorithms are, subsequently, implemented 

in a series of case studies to measure the fidelity of the latter approach. 

Mixed-integer non-linear program (MINLP) 

Equations 6.5-11 summarize the mixed-integer non-linear program (MINLP) optimization problem 

for minimizing traffic-weighted IRI across a roadway network.  Equation 6.5 states the objective 

function: minimize total IRI (weighted by traffic volume) of the network over T years and N facilities.   

Equations 6.6-8 are the system model, which maps the evolution of the system between year t and 

t+1.  Details on the principles of a system model can be found in Chapter 2.  Equation 6.6 asserts 

that the roughness of a pavement segment immediately following a maintenance action is equal to 

that of a brand new pavement.  However, that does not mean that the deterioration rate will be 

equivalent to a new pavement, as the rate of degradation is not only a function of AADTT and 

pavement thickness/structural number, but also the age of a pavement, as noted in Equation 6.7.  

The deterioration models that are integrated into the MINLP and greedy heuristic can be found in 

Chapter 4.  Equation 6.8, the last part of the system model, declares that the degradation level of a 

pavement at the start of the next year is equal to its immediate post-decision state (Equation 6.6) 

and rate of deterioration between years (Equation 6.7). 

Equations 6.9-11 are the major constraints of the model.  Equation 6.9 conditions that no more 

than one rehabilitation action can be applied to any segment in a given year.  Furthermore, Equation 

6.10 declares that the decision to apply a maintenance action is a binary choice.  Lastly, Equation 

6.11 stipulates that expected costs at each year must be less than the budget made available in that 

year.  Definitions for all terms and variables that are part of the MINLP can be found in Table 6-1.     

 
min  ∑  ∑ 𝐴𝐴𝐷𝑇𝑛,𝑡𝐼𝑅𝐼𝑛,𝑡

𝑁

𝑛=1

𝑇

𝑡=0

 
           
(6.5)            
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 subject to                          

 
𝐼𝑅𝐼𝑛,𝑡

𝑥 = 𝐼𝑅𝐼𝑛,𝑡 − ∑ 𝑋𝑎,𝑛,𝑡(𝐼𝑅𝐼𝑛,𝑡 − 𝐼𝑅𝐼𝑚𝑖𝑛)∀𝑛 = 1,2,…𝑁, ∀𝑡 = 0,1, …𝑇 − 1
𝐴

𝑎=1

      (6.6)        

 𝐷(𝑡)𝑛,𝑡 = 𝑓(𝑆𝑁𝑛,𝑡
𝑥 , 𝐴𝐴𝐷𝑇𝑛,𝑡, 𝐴𝑔𝑒𝑛,𝑡

𝑥 )      (6.7)        

 𝐼𝑅𝐼𝑛,𝑡+1 = 𝐼𝑅𝐼𝑛,𝑡
𝑥 + 𝐷(𝑡)𝑛,𝑡      (6.8)        

 
∑ 𝑋𝑎,𝑛,𝑡 ≤ 1
𝐴

𝑎=1

∀𝑛 = 1,2, …𝑁, ∀𝑡 = 0,1, …𝑇 − 1      (6.9)            

 𝑋𝑎,𝑛,𝑡 ∈ {0,1}    (6.10)            

 
∑ 𝐶𝑛,𝑡(𝑋𝑛,𝑡) ≤ 𝐵𝑡∀𝑡 = 0,1, …𝑇 − 1
𝑁

𝑛=1

    (6.11)            

Table 6-1. Definition of all variables that are part of the MINLP. 

Variable Meaning 

n Index of nth pavement segment across a roadway network 

t Discretized time interval 

a Index of maintenance action applied to nth segment in year t 

AADTn,t Average annual daily traffic (AADT) for the nth segment in year t 

IRIn,t 
International roughness index (IRI) value for the nth segment prior to a decision in 
year t 

IRIx
n,t The immediate post-decision IRI of the nth segment in year t 

IRImin The minimum IRI for a new or rehabilitated segment 

IRIn,t+1 International roughness index (IRI) value for the nth segment at the start of year t+1 

Xa,n,t Decision variable to apply rehabilitation action a to segment n in year t 

D(t)n,t Degradation rate of nth pavement segment between year t and t+1 

SNx
n,t The immediate post-decision thickness/SN of the nth segment in year t 

AADTTn,t Average annual daily truck traffic (AADTT) for the nth segment in year t 

Agex
n,t The immediate post-decision age of the nth segment in year t 

Cn,t(Xn,t) Function that maps the agency cost of the decisions made for segment n in year t 

Bt Available annual budget for network in year t 

As mentioned previously, the MINLP can be solved using a divide and conquer optimization 

algorithm to search for the global optimum of the deterministic problem.  Because there is no 

guarantee regarding how long it will take the solver to find the globally optimal solution, however, 

the tolerance of the algorithm is relaxed such that it stops searching when it is within at least 2% of 

the best solution. 
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Greedy heuristic 

This dissertation proposes a heuristic approach for sequential decision-making that overlaps with an 

earlier algorithm developed by Ouyang and Madanat (2004) but now for the performance 

maximization problem.   The algorithm assumes that the two-stage bottom-up technique for 

pavement management can also lead to a near-optimal policy in performance maximization 

problems with some amendments.  In the first stage, rather than solving a trivial dynamic program 

for each pavement facility, an alternative calculation is proposed to measure the efficacy of a given 

rehabilitation action.  Specifically, at the start of each year, the first stage of the algorithm calculates 

the expected difference in pavement degradation between the present year, t*, and the end of the 

analysis period, T, should (a) only the kth maintenance action be applied at year t* and (b) no 

maintenance action, k=0, be applied between t* and T.  Figure 6-1 depicts the previous description, 

with accompanying definitions of terms provided in Table 6-3. 

Table 6-2 offers a more detailed description of the algorithm proposed for the first stage of the 

performance maximization problem.  A potential drawback of the below formulation is that the 

algorithm does not consider the path dependence of allocation choices over time.  One alternative 

formulation that this dissertation considered, as a result, was combining the first and second stages 

of the algorithm as an adaptive dynamic program (ADP).  Such an approach could account for the 

path dependence of decisions and simultaneously cope with the “curse of dimensionality” (Powell 

2007).  However, the ADP technique is unnecessary should the below formulation lead to a near-

optimal solution.  

Table 6-2. First stage of two-stage bottom-up algorithm for the network-level performance maximization problem. 

For n = 1 to N 

Calculate the integral of E[Dt(at*

kk =0
)] between year t* and T 

For k = 1 to A 

Calculate the integral of E[Dt(at*

k
)] between year t* and T 

Compute ΔD(at*

k
) per Figure 6-1 

Store estimate of ΔD(at*

k
) and pass on to second stage of the algorithm 

Next k 

Next n 
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Figure 6-1. Schematic of greedy algorithm proposed for first stage of the performance maximization algorithm. 

Table 6-3. Definition of parameters for greedy heuristic for nth pavement segment. 

Variable Meaning 

t Discretized time interval 

t* Specific time interval when allocation decision is made 

T End of analysis period 

a
t*

k
 

Counter of kth possible action that can be applied to segment n at t*.  k=0 refers to 
the decision to “do nothing” 

E[D
t
]  The expected roughness level of a pavement in all future years under the assumption 

that the kth activity is applied at t*. 

SN(a
t*

kk
) 

Thickness/(SN) of the nth segment following action k in year t*.  Structural number 
is assumed to be constant between year t* and T following the application of the kth 
decision 

AADTT Average annual daily truck traffic (AADTT) for the nth 

Age(a
t*

kk
) Age of the nth segment between t* and T if only the kth action occurs at t* 

ΔD(a
t*

k
) Calculated benefit per Table 6-2 and Figure 6-1 for the kth action for segment n 

The outputs of the first stage of the algorithm are passed on to the second stage, which follows a 

traditional knapsack approach.  Because the goal of this thesis is to search for an allocation decision 
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ΔD(at*

k
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k=0

)]–E[Dt(at*

k

))dt
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t
*  

E[Dt(at*

kk =0
)]~ f (SN(at*
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in year t* that causes the system to minimize traffic-weighted IRI over the analysis period, the 

objective function is set to maximize the summation of the product of roadway volume and the 

expected performance benefit of an action per the first stage of the algorithm (Equation 6.12).  

Constraints are similar to that of the MINLP, where only one maintenance event, Xk,n, can be applied 

to a segment at a given time period (Equation 6.13), the decision to apply an action is binary 

(Equation 6.14), and the total cost of the final actions selected, Xn, for all segments, Cn(Xn), cannot 

exceed the available budget (Equation 6.15).  The one obvious difference, however, is that 

constraints must only be satisfied in the present year, t*, rather than across all years, T, in the MINLP. 

 
max  ∑ ∑ 𝐴𝐴𝐷𝑇𝑛

𝐴

𝑘=1

Δ𝐷𝑛(𝑎𝑡∗
𝑘 )𝑋𝑘,𝑛

𝑁

𝑛=1

   (6.12)        

 subject to  

 
∑ 𝑋𝑘,𝑛 ≤ 1
𝐴

𝑘=1

∀𝑛 = 1,2, …𝑁   (6.13)            

 𝑋𝑘,𝑛 ∈ {0,1}   (6.14)            

 
∑ 𝐶𝑛(𝑋𝑛) ≤ 𝐵𝑡∗

𝑁

𝑛=1

   (6.15)        

Case study analyses and findings 

Table 6-4 provides an overview of the context(s) that the MINLP and two-stage bottom-up algorithm 

are implemented in, with the goal of measuring the fidelity of the solution for the latter.  The state 

of Virginia’s DOT currently maintains 3,000 pavement segments that traverse more than 4,000 lane-

miles.  For this particular chapter, both algorithms search for an optimal/near-optimal allocation 

policy to maintain six randomly selected segments from the available population over a 25-year 

analysis period.  For each randomly generated scenario, the problem is solved for a budget constraint 

of $300k/year, enough for two minor maintenance actions or a single major maintenance in a given 

year, and $600k/year, which can accommodate a single reconstruction at any point in time.  This 

research solves the described problem 200 separate iterations with the two algorithms. 
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Table 6-4. Summary of case study inputs 

Input Value 

Number of Segments (n) 6 

Analysis Period (T) 25 

Budget (Bt) $300k-$600k 

SNn,t=0 3.2-13.8 

AADTn,t=0 7,400-213,400 

AADTTn,t=0 210-15,270 

Agen,t=0 0-60 

IRIn,t=0 40-321 

To generate a sufficient sample to comment on the overall fidelity of the two-stage bottom-up 

algorithm, the optimization problem only considers three alternative maintenance actions: a 2” mill 

and fill, a 4” thick overlay, and an 8” pavement reconstruction.  Expected costs for each of these 

maintenance actions for a 1-mile long, 2-lane wide pavement, are based upon cost data collected by 

the state DOT.   Table 6-5 summarizes the total cost of each action and immediate impact of each 

action (ak) on the age (Agex
n,t) and thickness (Thickx

n,t) of a pavement segment.  As mentioned in 

previous sections, the option to do nothing is referenced as ak=0. 

Table 6-5. Summary of decision-variables for case study optimization. 

Input 

Maintenance Action (ak) 

k=0 k=1 k=2 k=3 

Cost of action ($), Cn,t(Xn,t) 0 $132k $209k $529k 

Post-decision Age (yrs.), Agex
n,t Agen,t Agen,t Agen,t 0 

Post-decision (x) Thickness (in.), Thickx
n,t Thickn,t Thickn,t Thickn,t + 4 8 

Figure 6-2 summarizes the performance of the greedy heuristic relative to the MINLP across all 

permutations.  The results presented in Figure 6-2 speak highly to the fidelity of the algorithm 

proposed in this dissertation.  Approximately 96% of the solutions from the simple heuristic fall 

within 2% of the global optimum.  Interestingly, across many of the simulations the heuristic’s 

locally optimal solution actually outperforms the global optimum.  Of course, such a result is a 

byproduct of the 2% tolerance placed upon the latter algorithm.   
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Figure 6-2. Relative difference between MINLP and two-stage bottom-up greedy heuristic across the iterations. 

Figure 6-3 illustrates the reduction in computational complexity for the greedy heuristic relative to 

the MINLP.  The two-stage bottom-up algorithm proposed in this dissertation arrives to its solution 

in less than 1 second, on average, for the 6 pavement, 25-year analysis period.  On the other hand, 

the MINLP takes anywhere from 2-30 minutes to solve the exact same allocation problem.  Such a 

result is important to comment on the feasibility of the proposed heuristic to scale to realistic size 

network-level problems.   

 
Figure 6-3. Computational time to solve the 6 pavement, 25-year analysis period problem per the MINLP and two-

stage bottom-up greedy heuristic across the iterations. 
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Conclusions 

The preceding analysis provides a measure of the fidelity of the two-stage bottom-up greedy heuristic 

algorithm proposed in this research.  Across the small deterministic case studies, the greedy 

algorithm solution is within 2% of the global optimum for 96% of the iterations.  This result 

demonstrates that the greedy algorithm is an effective mechanism for decision-making with the 

additional benefit of being able to allow decisions to change in the probabilistic context.  The greedy 

algorithm also solves the small, deterministic problem in less than 1 second across all iterations.  

This outcome, consequently, suggests that the algorithm presented has reduced computational 

complexity as compared to alternative techniques, allowing the approach to solve large-scale 

pavement management problems (such as the one to be presented in Chapter 7).  The findings of 

this chapter, hence, provide robust evidence that the algorithmic approach proposed in this 

dissertation offers a high-fidelity solution for the particular network-level performance maximization 

problem of interest. 

With that said, the greedy algorithm described is potentially susceptible to sub-optimal allocation 

decisions should it be applied for a problem under a different set of constraints or with a starkly 

different system model.  After all, even though the algorithm can be viewed as an augmented greedy 

technique due to its ability to partially account for the future, the algorithm is nevertheless 

shortsighted, as the implication of future decisions cannot be captured.  Should such a scenario 

cause the greedy algorithm to drift away from the optimal allocation policy, researchers should 

evaluate alternative methods to improve the fidelity of the proposed algorithm. 
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IV. STOCHASTIC MODEL 

SYNTHESIS 

Part IV integrates the results of Part II and Part III within a stochastic simulation model to estimate 

the value of incorporating concrete-based technologies for the maintenance of pavement networks.  

The complete model is applied to the Commonwealth of Virginia’s interstate system, whose DOT 

currently preserve their roadway network with asphalt-based treatments only.  Results from the 

analysis demonstrate that VDOT is able to achieve its desired performance goals, on average, at a 

cost reduction of 10% by incorporating multiple paving materials as part of their pavement 

management strategy.  The expected difference stems from the availability of concrete-based designs 

to act as an insurance policy at moments of elevated asphalt prices and stable/suppressed concrete 

maintenance costs.  The results for the case study analysis hold true even in the iso-performance 

case, where the degradation models for both materials are equivalent.   

 

𝑆𝑡+1 = 𝑆𝑀,𝑊(𝑆𝑡
𝑥,𝑊𝑡+1) 

𝑆𝑡 𝑥𝑡 ∈ 𝜒𝑡 

System Model 

𝑆𝑡
𝑥 = 𝑆𝑀,𝑥(𝑆𝑡, 𝑥𝑡) 

𝑊𝑡+1 

Decision Variable 

Part III 

Part II 
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7. CHAPTER 7: THE INCORPORATION OF CONCRETE-
TECHNOLOGIES TO MITIGATE DOWNSIDE RISK 

Background on the Virginia interstate system 

Charged with the task of maintaining an extensive roadway system that spans nearly 60,000 miles, 

the Virginia Department of Transportation (VDOT) continues to search for new techniques to 

preserve the Commonwealth’s aging roadway network (VDOT 2016).  With an annual fiscal budget 

that exceeds $6 billion, the long-term performance of Virginia’s roadway system is not only a concern 

for transportation officials but also the policy-makers who appropriate available tax funds to the 

agency amongst competing public needs (VDOT 2016).  In fact, only spending on education and 

healthcare has exceeded transportation expenditures over the last decade within the Commonwealth 

(U.S. Census 2013).  As a result, the purpose of this chapter is to assess the implication of the status-

quo policy for highway maintenance by VDOT and quantify the potential value of incorporating 

concrete-based maintenance alternatives as part of their pavement management strategy.   

This chapter estimates the long-term performance of VDOT’s interstate system, which constitutes 

an important 2% of the total miles that VDOT maintains and preserves.  Figure 7-1 and Figure 7-2 

summarize the current state of the interstate system within the Commonwealth with respect to (a) 

traffic volume and (b) roadway condition, measured in terms of the international roughness index 

(IRI).  As was mentioned previously, DOTs generally prioritize available resources, either implicitly 

or explicitly, towards roadways subject to higher traffic volumes.  As can be noted in the figures 

below, within Virginia, pavement segments that are in a “good” state of repair are generally located 

around populous city centers (i.e., Washington, D.C., Arlington, and Richmond) as well as major 

thruways (i.e., Interstate-95).  These figures support the notion that the minimization of IRI, 

weighted by traffic volume, across the network over a designated analysis period (AP) is an objective 

function that corresponds well to the current decision-making process for VDOT. 

The following sections proceed by first providing an overview of the techniques typically used by 

researchers to assess the value of a real option.  Subsequently, this chapter discusses a nuanced 

valuation approach for the performance maximization problem prior to presenting case study results.
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Figure 7-1. Average annual daily two-way traffic (AADT) of roadway segments within the Commonwealth of Virginia as of 2014. 
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Figure 7-2. Average two-way IRI (inches/mile) of roadway segments within the Commonwealth of Virginia as of 2014. 

  

Washington, D.C. 

Richmond 

Virginia Beach 

Norfolk 

Arlington 

Alexandria 

< 80 < 100 < 120 < 140 < 160 >160 



   

102 

Valuation of financial and real options 

In the field of financial derivatives, an option is the right, though not the obligation, to buy (referred 

to as a “call”) or sell (referred to as a “put”) an asset for a pre-determined “strike” price at any point 

prior to its expiration (Wang 2005).  The concept of real options, which was pioneered by Stewart 

Myers over 40 years ago, extends these principles for the strategic planning of large-scale projects 

(Lin, de Weck et al. 2013; Myers 1984).  More specifically, real options are sources of flexibility 

embedded within complex engineering systems that managers have the right to call upon at a future 

date in time.  These sources of flexibility oftentimes come at some specified initial-cost, similar to 

financial options, and may also require a “maintenance” cost to ensure that the right exists to call 

upon them in the future (de Neufville and Scholtes 2011).  Unlike financial derivatives, however, a 

real option may not (and frequently will not) expire. 

The types of real options available to a decision-maker can be broadly classified into three types: the 

ability to change the size of a system, the ability to change its function, and the ability to protect 

against potential failures (de Neufville and Scholtes 2011).  Such real options may be designed “on” 

the system, typically in the form of managerial decisions (e.g., the decision to abandon a project), or 

“in” the system through a technological knowledge of the system at hand (Yang 2009).  The decision 

to incorporate concrete-based technologies by VDOT would represent one possible real option “in” 

the system available to the planning agency.     

For the most part, researchers typically construct stochastic simulation models, such as the one 

developed in this dissertation, to estimate the value of embedding real options within a 

project/system (Cardin 2011; de Neufville and Scholtes 2011).  Such a valuation approach is simple 

with today’s available computing resources, which can easily accommodate thousands of uncertain 

parameters that underly the decision-making process.  Furthermore, such a method does not require 

restrictions regarding distribution type that one finds in financial option valuation techniques such 

as the Black Scholes option pricing model (Black and Scholes 1973).   

Once a stochastic simulation has been developed, such as the pavement management model per 

Figure 2-1, Monte Carlo simulations are typically conducted to estimate the distribution of system 
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performance (a) using the conventional, static approach for design and (b) after embedding flexibility 

into the system.  Because decision-makers are usually interested in the present value for a given 

investment, managers make use of three metrics from the Monte Carlo simulations: expectated net 

present value (ENPV), the Value at Risk (VaR), and the Value at Gain (VaG) (de Neufville and 

Scholtes 2011).  ENPV represents the sample average of the outcomes for the system over the set of 

Monte Carlo iterations.  Such a metric is particularly useful should the decision-maker be risk-

neutral, meaning that one is indifferent between multiple investment choices with the same expected 

payoff but with different levels of risk.  Should a decision-maker exhibit these characteristics, then it 

would be expected that they would embed the flexible option in their system so long as:  

 ENPVwith flexibility - ENPVwithout flexibility > 0 (7.1) 

The above calculation is similar, in many ways, to the traditional approach to estimate the “value of 

information” in decision analysis (de Neufville 1990).  Of course, two issues with ENPV is that (a) 

it provides no insight regarding the degree to which the option is mitigating downside risk and/or 

capitalizing on a positive future and (b) decision-makers frequently have a non-linear preference 

towards more certain investments, even if the expected payoffs are lower (e.g., risk-aversion) (de 

Neufville 1990).  As a result, decision-makers will frequently benefit from plotting the cumulative 

distribution of outcomes (e.g., “target curve”) to have a concise graphical representation of the effect 

of the real option on system performance.  Two particular values researchers are interested in from 

the target curve are the VaR(α), where there is only α probability that net present value (NPV) will 

fall below a certain threshold, and VaG(α), the NPV estimate in which there is only α probability 

that NPV may exceed its value (Brealey et al. 2006).   More generally, the VaR and VaG of an 

investment are two quantile functions of the random variable NPV, xNPV,  that can be represented 

as: 

 Value at Risk(α) = inf{𝑥𝑁𝑃𝑉(𝛼)ϵℝ ∶ 𝛼 ≤ 𝐹𝑋𝑁𝑃𝑉(𝑥𝑁𝑃𝑉)} (7.2) 

 Value at Gain(α) = inf{𝑥𝑁𝑃𝑉(1−𝛼)ϵℝ ∶ 1 − 𝛼 ≤ 𝐹𝑋𝑁𝑃𝑉(𝑥𝑁𝑃𝑉)} (7.3) 

where Fx is the cumulative distribution function for a random variable.  Figure 7-3 illustrates an 

academic example where a decision-maker has two available strategies to carry through with an 
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investment.  Alternative 1 should be viewed as the static design choice for the decision-maker, while 

Alternative 2 embeds flexibility into the system by spending an upfront cost to have the contractual 

right to abandon the project should the future follow a pessimistic path.  As can be noted in 

Figure 7-3, although the ENPV of the two alternative investement strategies is the same, the VaR 

and VaG of those same alternatives are quite different.  Consequently, should a decision-maker 

exhibit a non-linear preference towards “safer” investments choices, one would expect that 

Alternative 2 would be the prefered decision, illustrating that ENPV offers an incomplete picture of 

the value of flexibility in engineering design.    

 
Figure 7-3. Illustrative example of ENPV, VaR, and VaG of two investments 

Valuation methodology of this thesis 

Estimating the value of incorporating a broader range of pavement materials and designs within 

VDOT’s pavement preservation strategy presents difficulties given that the objective function is to 

maximize the pavement condition of roadways within the Commonwealth.  One potential strategy 

to overcome this problem would be to transform the condition of roadway segments into a cost to 

the users of those facilities, as discussed in Chapter 2 and Chapter 6.  Of course, there are two issues 

with framing the outputs of the analysis in terms of an equivalent user cost.  First, it is immensely 

difficult to estimate a reasonable function that maps the condition of pavement segments to user 

costs.  Second, such an output is potentially of little use to a planning agency given that the structural 
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condition/ride quality of pavement facilities is their primary concern (Rangaraju, Amirkhanian et 

al. 2008).  As a result, this dissertation proposes an alternative method to estimate the economic 

value of this particular source of flexibility within a DOT’s pavement management plan.   

Suppose that policy-makers within the Commonwealth of Virginia are interested in the following 

question: what is the minimum annual budget that must be allocated to the interstate system such 

that, on average, VDOT is able to reach its long-term performance goal(s)?  Posing the problem as 

such makes two important assumptions; namely, that policy-makers are risk-neutral towards their 

infrastructure investments and that the planning agency will utilize appropriated financial resources 

in an optimal/near-optimal fashion.  Should both assumptions be fulfilled, a simple iterative search 

algorithm can be constructed that solves for the annual budget (in real dollars), Bt, that is needed by 

VDOT to, on average, reach its long-term objective(s) both with and without concrete-based 

technologies made available.  The difference in the annual budgets can be viewed as the expected 

value of the real option proposed in this dissertation.  Of course, this calculation does not account 

for the cost to the agency to attain this source of flexibility, an important consideration should the 

expected value be small. 

Table 7-1 summarizes the search algorithm procedure for this dissertation, which finds the budget 

level in which the expected traffic-weighted IRI across the network over a fixed analysis period (AP), 

𝑆�̅�𝑃, is equal to the long-term goal of the agency, 𝑆0̅.  To initiate the algorithm, an annual budget, 

B
0
t, is purposely selected such that 𝑆�̅�𝑃 will be greater than 𝑆0̅.  To estimate the expected performance 

of the system for the defined AP and budget level, the model conducts J Monte Carlo simulations 

using the system model, exogenous information, and allocation policy of Part II and Part II of this 

thesis. Subsequently, the annual available budget is increased in increments of Δ until the absolute 

expected difference between current and future system performance, δ, no longer monotonically 

decreases.   

One major drawback of the above valuation method is that it provides no mechanism to characterize 

whether a change in expected value is a result of the concrete-based technologies allowing the 

planning agency to mitigate downside risk and/or capitalize on a prosperous future.  Therefore, this 

research generates target curves of average network-level performance both with and without this 
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particular type of real option for the budget-level selected in the status-quo maintenance policy 

scenario.   

Table 7-1. Search algorithm to estimate the value of the real option to incorporate concrete-based technologies in a 
pavement preservation plan. 

Average system performance over AP for jth iteration, 𝑆�̅�𝑃
𝑗 = ∑ ∑ 𝐴𝐴𝐷𝑇𝑛,𝑡𝐼𝑅𝐼𝑛,𝑡

𝐴𝐴𝐷𝑇𝑛,𝑡

𝑁
𝑛=1

𝑇
𝑡=0   

Average system performance over j iterations, 𝑆�̅�𝑃 = ∑ 𝑆�̅�𝑃
𝑗𝐽

𝑗=1  

Average system performance goal, 𝑆0̅ 
 

Initialization: 
Set B0

t such that 𝑆�̅�𝑃 < 𝑆0̅ 
 

For i =1 to B 
Bi

t = B0
t + Δi 

 

For j = 1 to J 
For t = 0 to T 

Per Figure 2-1: 
Allocate resources across network, 𝑥𝑡 ∈ 𝜒𝑡 
Determine post-decision state of network, 𝑆𝑡

𝑥 = 𝑆𝑀,𝑥(𝑆𝑡, 𝑥𝑡) 
Generate one sample path (ωj

t+1) of how the system evolves between t and t+1 

Determine state of system in year t+1, 𝑆𝑡+1 = 𝑆𝑀,𝑊(S𝑡
𝑥,𝑊𝑡+1)   

Next t 

Store 𝑆�̅�𝑃
𝑗  

Next j 
 

Calculate 𝑆�̅�𝑃 for Bi
t 

Calculate 𝑆�̅�𝑃 − 𝑆0̅ = 𝛿𝑖 
 

If |𝛿𝑖| > |𝛿𝑖−1|  
Report Bi-1

t 
Output Monte Carlo simulations for Bi-1

t 
Exit For loop 

Else End If statement 
Next n 

Summary of case studies 

The purpose of this chapter is to quantify the value to a planning agency of deploying concrete-based 

rehabilitation actions as part of their pavement management strategy.  The status-quo approach for 

many planning agencies, including VDOT, is to utilize only asphalt-based technologies and, 

furthermore, estimate expected future system-wide performance using a deterministic model.  A 

potential consequence of the static nature of current practice, however, is that it makes VDOT 
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unable to appreciate the value of being able to adapt to an uncertain future.  Specifically, the future 

price of construction commodities, particularly as it relates to asphalt, are highly volatile.  Thus, the 

hypothesis of this dissertation is that concrete-based maintenance alternatives can act as an insurance 

policy that protects planners at moments in time of spiraling asphalt prices and suppressed concrete 

construction costs.   

One issue in testing this hypothesis is that the pavement deterioration models in Chapter 3 make 

very different assumptions regarding the pavement degradation process for alternative paving 

materials.  Potentially, the benefit of incorporating concrete-based technologies for preserving a 

pavement network is not due to the flexibility it offers the decision-maker, but rather a result of the 

lower rate of degradation for concrete-based designs.  As a result, this dissertation conducts the 

analyses (a) incorporating the pavement deterioration models in Chapter 3 and (b) assuming that 

concrete-based pavements have the same rate of degradation as asphalt pavements, referred to as the 

iso-performance instance (per Table 7-2). 

Table 7-2. Scenarios analyzed to test hypothesis of dissertation. 

Deterministic Approach 

(1)  Degradation Models per Chapter 3 
(a) Asphalt 

(b) Asphalt and Concrete 

(2) Iso-performance pavement degradation 

(a) Asphalt 

(b) Asphalt and Concrete 

Stochastic Simulation Model 

(1) Degradation Models per Chapter 3 
(a) Asphalt 

(b) Asphalt and Concrete 

(2) Iso-performance pavement degradation 
(a) Asphalt 

(b) Asphalt and Concrete 

The objective of the case studies defined in Table 7-2 is to determine the budget-level where VDOT 

is able to maintain their interstate system over a 50-year analysis period such that, on average, traffic-

weighted IRI across the network is equal to the current condition of the system (88 in./mi.).  To 

accommodate the computational expense associated with the iterative search algorithm, this section 

uses large budget increments, Δ, of $5 million followed by $1 million, while the number of Monte 
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Carlo iterations is close to 100.  A larger sample of Monte Carlo iterations is generated once the 

search algorithm converges to a particular budget level. 

The maintenance actions available to the planning agency, as well as their expected costs, are listed 

in Table 7-3.  These cost estimates are based off of an analysis of publically available bid data per the 

approach in Chapter 4 (Oman Systems Inc., 2016).  It is important to note that although there is 

uncertainty related to the actual cost of construction for each facility at a given point in time, its 

importance is minimal for a reasonably large pavement network.  For illustrative purposes, suppose 

that one applies the same action to a number of homogenous pavement facilities, n,  at any point in 

time.  If the cost of the individual maintenance action is Gaussian distributed and uncorrelated 

across the facilities, then the expected total cost of applying that action to the entire system scales by 

n while the standard deviation only increases by n1/2.  Therefore, if n is sufficiently large, then it is 

reasonable to assume that the implication of this source of variation is minimal.  Hence, this 

dissertation only incorporates cost uncertainty as it relates to the evolution of the average cost of 

construction per the approach and estimates in Chapter 5.  

Table 7-3. Available actions incorporated into simulation model. 

Maintenance Type Name of Action Applicable Sections 
Expected Cost 

($/SQY) 

Minor Rehabilitation Diamond Grinding Concrete top layer only 6.87 

Minor Rehabilitation 2” Mill and Fill Asphalt top layer only 8.03 

Major Rehabilitation 4” Asphalt Overlay Concrete/Asphalt top layer 12.18 

Major Rehabilitation 4” Concrete Whitetopping  Concrete/Asphalt top layer 16.67 

Reconstruction New 8” Asphalt Concrete/Asphalt top layer 26.10 

Reconstruction New 12” Asphalt Concrete/Asphalt top layer 39.15 

Reconstruction New 8” JPCP Concrete/Asphalt top layer 33.33 

Reconstruction New 12” JPCP Concrete/Asphalt top layer 50.00 

Results 

Deterministic case studies 

Table 7-4 synthesizes the findings for the deterministic case studies detailed previously.  As can be 

noted in Table 7-4, the expected annual budget to maintain the network at its current level with the 

status-quo preservation policy for VDOT is $67 million.  Should VDOT incorporate the concrete-
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based technologies detailed in Table 7-4, however, it is expected that the agency can achieve an 

equivalent level of performance with a reduced budget of $64 million annually.  In other words, the 

deterministic approach suggests that VDOT would save $3 million annually by integrating concrete-

based technologies for the maintenance of their interstate system.  These savings in the deterministic 

case primarily stem from the lower rate of deterioration for concrete pavements per the degradation 

models of Chapter 3, as the expected savings in the iso-performance scenario is only $1 million per 

year.   

Table 7-4. Results for deterministic case studies. 

 Degradation Model Type Materials Incorporated Annual Budget (Bt) 

(1) Degradation Models per Chapter 3 

(a) Asphalt $67m/year 

(b) Asphalt and Concrete $64m/year 

Expected Value of Concrete: $3m/year 

(2) 
Iso-performance pavement 

degradation 

(a) Asphalt $67m/year 

(b) Asphalt and Concrete $66m/year 

Expected Value of Concrete: $1m/year 

The previous deterministic analysis, although offering some initial insight for the system at hand, is 

unable to estimate the value of the flexibility to alter maintenance strategies through the integration 

of a broader set of materials and designs by VDOT.  Specifically, embedding flexibility within 

engineering systems will typically generate asymmetric returns, as the real option is exercised only at 

moments in time where it is advantageous to do so (de Neufville and Scholtes 2011).  The results 

for the probabilistic case, therefore, will offer better insight regarding the value of the added 

flexibility made available to VDOT by incorporating concrete-based pavement technologies for their 

pavement preservation strategy. 

Probabilistic case studies 

Table 7-5 summarizes the findings of the probabilistic case studies.  Interestingly, the search 

algorithm converges to the same annual budget of $67 million for the asphalt-only maintenance 

policy as was found in the deterministic case.   Figure 7-4 plots the target curve for this particular 

scenario, in addition to a policy with an equivalent annual budget where VDOT maintains their 

interstate system (a) only with concrete-based technologies and (b) utilizing both materials.   As a 
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reminder to the reader, a lower traffic-weighted IRI is associated with a higher performing network, 

and so a stochastically dominant maintenance strategy would be on the left-hand side of Figure 7-4. 

Table 7-5. Results for probabilistic case studies. 

 Degradation Model Type Materials Incorporated Annual Budget (Bt) 

(1) Degradation Models per Chapter 3 

(a) Asphalt $67m/year 

(b) Asphalt and Concrete $60m/year 

Expected Value of Concrete: $7m/year 

(2) 
Iso-performance pavement 

degradation 

(a) Asphalt $67m/year 

(b) Asphalt and Concrete $63m/year 

Expected Value of Concrete: $4m/year 

As can be noted in Figure 7-4, the expected traffic-weighted IRI of a concrete-only maintenance 

policy is slightly lower (86 in./mi.) than an asphalt-only pavement preservation strategy (88 in./mi.).  

Furthermore, because asphalt prices are highly volatile, the traffic-weighted IRI for the asphalt-only 

preservation policy exhibits a greater amount of dispersion than the concrete-only maintenance 

alternative.  Consequently, the maintenance policy that integrates both materials is able to limit 

downside risk at moments of spiraling asphalt prices while still being able to capitalize, for the most 

part, when prices are lower than expectations.   

 
Figure 7-4. Traffic-weighted IRI of system over prescribed analysis period for $67 million annual budget utilizing (a) 

only asphalt (b) only concrete and (c) both materials.  Pavement deterioration follow the findings of Chapter 3. 

To make this important insight clearer, Figure 7-5 plots the percent composition of the system that 
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(a) only asphalt (b) only concrete and (c) both materials.  In the case that both materials are present 

in the system, there is high variability regarding how the network will evolve over time.  Figure 7-7 

subsequently plots the average traffic-weighted IRI of the system for each Monte Carlo simulation 

when multiple paving materials are used relative to the percent composition of the system that is 

asphalt by the end of the analysis period.  There is a strong negative correlation (-0.79) between the 

two variables, indicating that the simulations in which the highest system-wide performance is 

achieved coincides with the iterations where asphalt is heavily used.  Of course, the scenarios where 

the network remains primarily asphalt is a result of asphalt price volatility making it advantageous 

to continue maintaining the system following current practice.  Conversely, the simulations where 

concrete becomes the dominant pavement type over the 50-year analysis period occur when the 

system performance is worst, as the concrete-based technologies act as an insurance policy to protect 

the agency when asphalt prices are elevated well above their current levels.  Figure 7-6 illustrates the 

expected benefit of incorporating multiple paving materials by mapping the expected performance 

of segments across the network with a $67 million annual budget for that scenario.  As is quite 

evident, the expected condition of the system is much higher than its current state per Figure 7-2. 

It is worth mentioning that a downside of the proposed heuristic is its inability to account for the 

path dependence of decisions.  As a result, the system in some simulations begins changing its 

composition earlier than optimal, as can be noted Figure 7-4, where the target curve with both 

materials present underperforms the asphalt-only scenario for low cumulative probabilities.  Such 

an outcome motivates the evaluation of alternative allocation policies in future academic research. 

 
Figure 7-5. Percentage of pavement segments with asphalt as its top-layer at the end of the 50-year analysis period 

for the $67 million annual budget scenario using (a) only asphalt (b) only concrete and (c) both materials. 
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Figure 7-6. Average two-way IRI (inches/mile) of roadway segments within the Commonwealth of Virginia with a $67 million annual budget and both materials 
present over a 50-year analysis period. 
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Figure 7-7. Average traffic-weighted IRI of network vs. percent of segments that are asphalt at the end of the 

analysis period for each Monte Carlo simulation for the $67 million annual budget scenario with both materials. 

To demonstrate that the results presented in Figure 7-4 and Figure 7-6 are of statistical significance, 

Figure 7-8 plots the outcomes of a bootstrap (sampling with replacement) for the null hypothesis 

that the difference in the expected traffic-weighted IRI between the multiple-material and single-

material maintenance policies is zero.  Results of this statistical analysis indicate that one can reject 

the null hypothesis that the expected performance for the single-material preservation strategy, 

whether it be concrete or asphalt, is equal to that of the multiple-material scenario.  Such a result 

demonstrates that the conclusions of this analysis are robust despite the small number of Monte 

Carlo simulations generated. 

 
Figure 7-8. Bootstrap results for the null hypothesis that the difference between the expected traffic-weighted IRI 

when utilizing multiple paving materials, μmultiple materials, versus a single paving material, μsingle material, is zero. 
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Figure 7-9 plots the target curve for the maintenance policy that utilizes both materials but with an 

annual budget of $60 million relative to the previously described asphalt-only policy.  The expected 

traffic-weighted IRI of the network across the two instances is approximately equivalent (88 in./mi.), 

yet a decision-maker might prefer the former policy should they exhibit risk aversion.  An important 

outcome for this section is that the benefit of concrete in the probabilistic case is $4 million per year 

higher than the result for the deterministic case, suggesting that the value generated from this source 

of flexibility is significant. 

 
Figure 7-9. Traffic-weighted IRI of system over prescribed analysis period for (a) asphalt-only network with $67 

million annual budget and (b) maintenance policy of both materials with an annual budget of $60 million.  
Pavement deterioration follow the findings of Chapter 3. 

Figure 7-10 provides a similar result as Figure 7-9, except now for the iso-performance scenario.  

Again, the inclusion of concrete for the maintenance of the pavement network adds greater value in 

the probabilistic case ($4 million annually) than in the deterministic case ($1 million annually).    

Furthermore, the benefit of this form of flexibility could be considered larger by a decision-maker 

should they be particularly concerned with mitigating downside risk.   
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Figure 7-10. Traffic-weighted IRI of system over prescribed analysis period in iso-performance scenario for (a) 

asphalt-only network with $67 million annual budget and (b) maintenance policy of both materials with an annual 
budget of $63 million. 

Conclusions 

As planning agencies continue to search for cost-effective strategies to maintain an aging 

infrastructure network, the incorporation of real options to proactively deal with an uncertain future 

is one method that decision-makers can begin to use to improve system-wide performance.  To do 

so, stochastic simulation models must begin to replace the current deterministic paradigms of today 

such that planning agencies can have a mechanism to capture the asymmetric benefits associated 

with flexibility.  The previous section discussed and analyzed the impact of one type of flexibility, 

the incorporation of a broader range of pavement materials and designs, to increase the expected 

performance of a pavement network. 

Results from this chapter suggest that planning agencies can achieve a performance level equivalent 

to the status-quo policy with a reduced budget of more than 10% by incorporating concrete-based 

technologies into their pavement management plan.  This benefit is a convolution of (a) the value 
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of flexibility and (b) the lower rate of deterioration, in general, for concrete pavements.  Holding 

deterioration constant between the two materials to remove the latter phenomenon, the value due 

to flexibility is approximately 6% for this particular case study.  Consequently, these results make a 

strong argument that allowing pavement maintenance strategies to be more flexible to proactively 

deal with an uncertain future is of significant value to a planning agency. 

An important next step for future work is to determine, approximately, the cost to integrate the 

proposed source of flexibility in this dissertation within a planning agency.  These costs include those 

associated with obtaining the technological knowledge (i.e., pavement engineers) of the proposed 

real option as well as, potentially, the cost to allocate resources towards concrete-based designs when 

it is disadvantageous to do so to ensure that the necessary market structure is in place to call upon 

the option at a future date.  
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V. DISCUSSION 

SYNTHESIS 

Part V summarizes the major insights, conclusions, and contributions of this dissertation.  This 

discussion ties together the findings from the earlier chapters, which developed novel methods for 

the characterization of uncertainty for exogenous information, up until the previous section, which 

evaluated the hypothesis that concrete-based maintenance alternatives may act as an insurance policy 

to protect a planning agency from downside risk.  Part V also discusses some of the opportunities to 

augment this dissertation from a methodological perspective.   
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CHAPTER 8: CONCLUDING REMARKS AND 
FUTURE WORK 

Conclusions and contribution  

As transportation agencies continue to grapple with limited funds and mounting maintenance 

needs, pavement management systems have emerged to allow planning agencies to implement more 

cost-effective resource allocation policies.  In their current form, planning agencies generally model 

exogenous information that underlies the decision-making process with single-point estimates.  

Practitioners and academics appreciate the simplicity of the deterministic approach, as it only 

requires considering one set of conditions that may arise in the future.  The deterministic approach 

leaves decision-makers, however, susceptible should the future unfold differently from their 

expectations.  Without explicitly considering uncertainty, planning agencies can neither identify 

opportunities to embed sources of flexibility to proactively deal with an unknown future nor quantify 

their value.  The optimal solution from deterministic tools, in other words, may very well be sub-

optimal, unbeknownst to the planners who carry through with implementing their suggestions.  

As a result, this dissertation has focused on understanding the performance roadway systems when 

uncertainty is explicitly considered.  In particular, this thesis has centered on understanding the 

ability of one potential type of real option, the deployment of concrete-based maintenance and 

rehabilitation alternatives, to mitigate downside risk in the case of an unfavorable future.  For the 

most part, planning agencies currently maintain their roadway networks only with asphalt-based 

technologies, leaving them vulnerable to the material price volatility for such maintenance actions.  

Consequently, concrete-based maintenance alternatives can act as an insurance policy/put option 

that protects planners at moments in time of elevated asphalt prices and suppressed concrete prices.  

To test the hypothesis set forth in this dissertation, a stochastic simulation model has been developed 

that incorporates uncertainty for exogenous information that underlies the decision-making process.  

The below sections discuss some of the novel findings for each component of the simulation model. 
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Part II: System Model and Exogenous Information 

Over the course of this thesis, several novel methodological approaches have been proposed to 

characterize expectations and uncertainty for important inputs in pavement management systems.  

Chapter 3 offers a new pavement degradation model for network-level decisions that requires low 

computational resources and is specified according to empirical data.  The results in this chapter 

potentially have far-reaching implications not only on network-level models but also on some of the 

current project-level tools used by DOTs and MPOs.  Chapter 4 proposes the integration of a 

maximum likelihood (ML) estimator for data transformations combined with least angle regression 

(LAR) for variable selection/reduction to estimate expectations and uncertainty for initial 

construction costs.  Such an approach offers a new way to address the systematic bias and 

heteroscedasticity that plagues existing cost-estimation methods.  Lastly, Chapter 5 develops a new 

hybrid approach for probabilistically forecasting the long-run price of material commodities.  Results 

from the chapter demonstrate that, unlike conventional opinion, forecasts can be constructed that 

provide excellent estimates of long-run price expectations and volatility. 

Part III: Allocation Policy  

Chapter 6 details a two-stage bottom-up greedy technique to determine the allocation of resources 

in the performance maximization problem.  The algorithmic approach has low computational 

complexity and, for the set of case studies analyzed, leads to near-optimal allocation solutions.  As a 

result, the algorithm provides a mechanism to solve realistic size problems without having to resort 

to the cost-minimization framework.  Furthermore, the algorithm makes decisions sequentially over 

time, thus allowing the decision-making framework to integrate within the real option approach of 

this thesis.  

Part IV: Stochastic Model 

Chapter 7 tests the hypothesis that concrete-based maintenance alternatives act as an insurance 

policy to reduce downside risk for a planning agency by simulating the performance of Virginia’s 

interstate system over a 50-year analysis period using the exogenous information and allocation 

policy models of Part II and Part III.  The objective is to minimize traffic-weighted roughness, a 

common metric of system performance used by planning agencies, for a network only composed of 
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asphalt moving forward and one that utilizes both asphalt and concrete.  A comparison of the 

solutions indicates that a planning agency can achieve the performance of the status-quo 

maintenance policy with multiple materials at a reduced cost of 10%.  This outcome stems from the 

availability to invest more in concrete-based maintenance actions at times of spiraling asphalt prices 

and stable concrete material costs for contractors.  Although this research has not determined the 

actual cost for this particular type of real option, its value is large enough such that it is likely worth 

the cost to obtain it. 

Limitations and future work  

There are several opportunities for future research to both extend and improve the general 

framework set forth in this dissertation.  Algorithmically, this research proposes a two-stage bottom-

up greedy heuristic for allocation decisions.  The major drawback of such an approach, however, is 

its general inability to account for the path dependence of allocation decisions over time.  Future 

research should evaluate if alternative methodological paradigms, such as adaptive dynamic 

programming (ADP) discussed in Chapter 6, can lead to higher fidelity solutions.   

Furthermore, the proposed algorithms of this dissertation seek to maximize expected network-level 

performance over time, implicitly assuming that planning agencies hold a risk-neutral perspective 

towards their infrastructure investments.  However, it is likely that transportation agencies, similar 

to managers of many other engineering systems, are risk-averse.  In other words, decision-makers 

frequently have a non-linear preference towards investments that have a low probability of poor 

performance (Hastings and McManus 2004).  Consequently, the investment strategy that maximizes 

expected performance is not always preferred; rather, for risk-averse decision-makers, it can be of 

higher utility to sacrifice expected returns for the sake of reducing downside risk.  Future research 

in pavement management should develop approaches that can account for the potential risk-averse 

nature of planners. 

Additionally, the objective function of this research is to minimize traffic-weighted roughness across 

a pavement network.  Having said that, planners are becoming interested in not only the general 

ride quality of pavements, but also their impact on the natural environment.  Future studies should 
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evaluate whether the findings of this study hold true for other objective functions of interest for 

transportation agencies.  Lastly, and as mentioned earlier, this study has not quantified the economic 

cost to integrate concrete-based alternatives as part of a pavement preservation strategy.  Future 

research should work with planning agencies to estimate the approximate cost to integrate the 

proposed source of flexibility.  
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